scholarly journals Invariance principles for random walks in random environment on trees

2021 ◽  
Vol 26 (none) ◽  
Author(s):  
George Andriopoulos
2016 ◽  
Vol 48 (1) ◽  
pp. 199-214
Author(s):  
Werner R. W. Scheinhardt ◽  
Dirk P. Kroese

Abstract We provide exact computations for the drift of random walks in dependent random environments, including k-dependent and moving average environments. We show how the drift can be characterized and evaluated using Perron–Frobenius theory. Comparing random walks in various dependent environments, we demonstrate that their drifts can exhibit interesting behavior that depends significantly on the dependency structure of the random environment.


2005 ◽  
Vol 121 (3-4) ◽  
pp. 361-372 ◽  
Author(s):  
C. Boldrighini ◽  
G. Cosimi ◽  
S. Frigio ◽  
A. Pellegrinotti

2009 ◽  
Vol 147 (1-2) ◽  
pp. 43-88 ◽  
Author(s):  
Alexander Fribergh ◽  
Nina Gantert ◽  
Serguei Popov

2004 ◽  
Vol 41 (01) ◽  
pp. 83-92 ◽  
Author(s):  
Jean Bérard

The central limit theorem for random walks on ℤ in an i.i.d. space-time random environment was proved by Bernabeiet al.for almost all realization of the environment, under a small randomness assumption. In this paper, we prove that, in the nearest-neighbour case, when the averaged random walk is symmetric, the almost sure central limit theorem holds for anarbitrarylevel of randomness.


2001 ◽  
Vol 38 (4) ◽  
pp. 1018-1032 ◽  
Author(s):  
T. Komorowski ◽  
G. Krupa

We prove the law of large numbers for random walks in random environments on the d-dimensional integer lattice Zd. The environment is described in terms of a stationary random field of transition probabilities on the lattice, possessing a certain drift property, modeled on the Kalikov condition. In contrast to the previously considered models, we admit possible correlation of transition probabilities at different sites, assuming however that they become independent at finite distances. The possible dependence of sites makes impossible a direct application of the renewal times technique of Sznitman and Zerner.


Sign in / Sign up

Export Citation Format

Share Document