scholarly journals Functional laws of the Iterated Logarithm for the Partial Sums of I. I. D. Random Variables in the Domain of Attraction of a Completely Asymmetric Stable Law

1974 ◽  
Vol 2 (6) ◽  
pp. 1108-1138 ◽  
Author(s):  
Michael J. Wichura
2006 ◽  
Vol 43 (1) ◽  
pp. 79-114
Author(s):  
Han-Ying Liang ◽  
Jong-Il Baek ◽  
Josef Steinebach

Let X1, X2,… be independent, but not necessarily identically distributed random variables in the domain of attraction of a stable law with index 0<a<2. This paper uses Mn=max 1?i?n|Xi| to establish a self-normalized law of the iterated logarithm (LIL) for partial sums. Similarly self-normalized increments of partial sums are studied as well. In particular, the results of self-normalized sums of Horváth and Shao[9]under independent and identically distributed random variables are extended and complemented. As applications, some corresponding results for self-normalized weighted sums of iid random variables are also concluded.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Wensheng Wang ◽  
Anwei Zhu

Let X={Xi,i≥1} be a sequence of real valued random variables, S0=0 and Sk=∑i=1kXi  (k≥1). Let σ={σ(x),x∈Z} be a sequence of real valued random variables which are independent of X’s. Denote by Kn=∑k=0nσ(⌊Sk⌋)  (n≥0) Kesten-Spitzer random walk in random scenery, where ⌊a⌋ means the unique integer satisfying ⌊a⌋≤a<⌊a⌋+1. It is assumed that σ’s belong to the domain of attraction of a stable law with index 0<β<2. In this paper, by employing conditional argument, we investigate large deviation inequalities, some sufficient conditions for Chover-type laws of the iterated logarithm and the cluster set for random walk in random scenery Kn. The obtained results supplement to some corresponding results in the literature.


2012 ◽  
Vol 12 (01) ◽  
pp. 1150002 ◽  
Author(s):  
ISTVÁN BERKES ◽  
LAJOS HORVÁTH ◽  
JOHANNES SCHAUER

Trimming is a standard method to decrease the effect of large sample elements in statistical procedures, used, e.g., for constructing robust estimators. It is also a powerful tool in understanding deeper properties of partial sums of independent random variables. In this paper we review some basic results of the theory and discuss new results in the central limit theory of trimmed sums. In particular, we show that for random variables in the domain of attraction of a stable law with parameter 0 < α < 2, the asymptotic behavior of modulus trimmed sums depends sensitively on the number of elements eliminated from the sample. We also show that under moderate trimming, the central limit theorem always holds if we allow random centering factors. Finally, we give an application to change point problems.


1987 ◽  
Vol 101 (2) ◽  
pp. 301-312 ◽  
Author(s):  
Erich Haeusler ◽  
David M. Mason

AbstractLet X1, X2, …, be a sequence of independent random variables with common distribution function F in the domain of attraction of a stable law and, for each n ≥ 1, let X1, n ≤ … ≤ Xn, n denote the order statistics based on the first n of these random variables. It is shown that sums of the middle portion of the order statistics of the form , where (kn)n ≥ 1 is a sequence of non-negative integers such that kn → ∞ and kn/n → 0 as n → ∞ at an appropriate rate, can be normalized and centred so that the law of the iterated logarithm holds. The method of proof is based on the almost sure properties of weighted uniform empirical processes.


1969 ◽  
Vol 6 (2) ◽  
pp. 419-429 ◽  
Author(s):  
C.C. Heyde

Let Xi, i = 1, 2, 3, … be a sequence of independent and identically distributed random variables which belong to the domain of attraction of a stable law of index a. Write S0= 0, Sn = Σ i=1nXi, n ≧ 1, and Mn = max0 ≦ k ≦ nSk. In the case where the Xi are such that Σ1∞n−1Pr(Sn > 0) < ∞, we have limn→∞Mn = M which is finite with probability one, while in the case where Σ1∞n−1Pr(Sn < 0) < ∞, a limit theorem for Mn has been obtained by Heyde [9]. The techniques used in [9], however, break down in the case Σ1∞n−1Pr(Sn < 0) < ∞, Σ1∞n−1Pr(Sn > 0) < ∞ (the case of oscillation of the random walk generated by the Sn) and the only results available deal with the case α = 2 (Erdos and Kac [5]) and the case where the Xi themselves have a symmetric stable distribution (Darling [4]). In this paper we obtain a general limit theorem for Mn in the case of oscillation.


2010 ◽  
Vol 42 (2) ◽  
pp. 509-527 ◽  
Author(s):  
Donata Puplinskaitė ◽  
Donatas Surgailis

Contemporaneous aggregation ofNindependent copies of a random-coefficient AR(1) process with random coefficienta∈ (−1, 1) and independent and identically distributed innovations belonging to the domain of attraction of an α-stable law (0 < α < 2) is discussed. We show that, under the normalizationN1/α, the limit aggregate exists, in the sense of weak convergence of finite-dimensional distributions, and is a mixed stable moving average as studied in Surgailis, Rosiński, Mandrekar and Cambanis (1993). We focus on the case where the slope coefficientahas probability density vanishing regularly ata= 1 with exponentb∈ (0, α − 1) for α ∈ (1, 2). We show that in this case, the limit aggregate {X̅t} exhibits long memory. In particular, for {X̅t}, we investigate the decay of the codifference, the limit of partial sums, and the long-range dependence (sample Allen variance) property of Heyde and Yang (1997).


1973 ◽  
Vol 16 (2) ◽  
pp. 173-177 ◽  
Author(s):  
D. R. Beuerman

Let Xl,X2,X3, … be a sequence of independent and identically distributed (i.i.d.) random variables which belong to the domain of attraction of a stable law of index α≠1. That is,1whereandwhere L(n) is a function of slow variation; also take S0=0, B0=l.In §2, we are concerned with the weak convergence of the partial sum process to a stable process and the question of centering for stable laws and drift for stable processes.


2010 ◽  
Vol 42 (02) ◽  
pp. 509-527 ◽  
Author(s):  
Donata Puplinskaitė ◽  
Donatas Surgailis

Contemporaneous aggregation of N independent copies of a random-coefficient AR(1) process with random coefficient a ∈ (−1, 1) and independent and identically distributed innovations belonging to the domain of attraction of an α-stable law (0 &lt; α &lt; 2) is discussed. We show that, under the normalization N 1/α, the limit aggregate exists, in the sense of weak convergence of finite-dimensional distributions, and is a mixed stable moving average as studied in Surgailis, Rosiński, Mandrekar and Cambanis (1993). We focus on the case where the slope coefficient a has probability density vanishing regularly at a = 1 with exponent b ∈ (0, α − 1) for α ∈ (1, 2). We show that in this case, the limit aggregate {X̅ t } exhibits long memory. In particular, for {X̅ t }, we investigate the decay of the codifference, the limit of partial sums, and the long-range dependence (sample Allen variance) property of Heyde and Yang (1997).


1975 ◽  
Vol 12 (02) ◽  
pp. 324-332
Author(s):  
Allan Gut

Let Sn, n = 1, 2, ‥, denote the partial sums of i.i.d. random variables with the common distribution function F and positive, finite mean. Let N(c) = min [k; Sk &gt; c‥kp ], c ≥ 0, 0 ≤ p &lt; 1. Under the assumption that F belongs to the domain of attraction of a stable law with index α, 1 &lt; α ≤ 2, functional central limit theorems for the first passage time process N(nt), 0 ≤ t ≤ 1, when n → ∞, are derived in the function space D[0,1].


Sign in / Sign up

Export Citation Format

Share Document