scholarly journals On stochastic differential equations for multi-dimensional diffusion processes with boundary conditions II

1971 ◽  
Vol 11 (3) ◽  
pp. 545-551 ◽  
Author(s):  
Shinzo Watanabe
1996 ◽  
Vol 61 (4) ◽  
pp. 512-535 ◽  
Author(s):  
Pavel Hasal ◽  
Vladimír Kudrna

Some problems are analyzed arising when a numerical simulation of a random motion of a large ensemble of diffusing particles is used to approximate the solution of a one-dimensional diffusion equation. The particle motion is described by means of a stochastic differential equation. The problems emerging especially when the diffusion coefficient is a function of spatial coordinate are discussed. The possibility of simulation of various kinds of stochastic integral is demonstrated. It is shown that the application of standard numerical procedures commonly adopted for ordinary differential equations may lead to erroneous results when used for solution of stochastic differential equations. General conclusions are verified by numerical solution of three stochastic differential equations with different forms of the diffusion coefficient.


1971 ◽  
Vol 5 (3) ◽  
pp. 351-356 ◽  
Author(s):  
Ludwig Arnold

Let for t ∈ [a, b] ⊂ [0, ∞) where Ws is an n-dimensional Wiener process, f(s) an n-vector process and G(s) an n × m matrix process. f and G are nonanticipating and sample continuous. Then the set of limit points of the net in Rn is equal, almost surely, to the random ellipsoid Et = G(t)Sm, Sm = {x ∈ Rm: |x| ≤ 1}. The analogue of Lévy's law is also given. The results apply to n-dimensional diffusion processes which are solutions of stochastic differential equations, thus extending the versions of Hinčin's and Lévy's laws proved by H.P. McKean, Jr, and W.J. Anderson.


1996 ◽  
Vol 33 (04) ◽  
pp. 1061-1076 ◽  
Author(s):  
P. E. Kloeden ◽  
E. Platen ◽  
H. Schurz ◽  
M. Sørensen

In this paper statistical properties of estimators of drift parameters for diffusion processes are studied by modern numerical methods for stochastic differential equations. This is a particularly useful method for discrete time samples, where estimators can be constructed by making discrete time approximations to the stochastic integrals appearing in the maximum likelihood estimators for continuously observed diffusions. A review is given of the necessary theory for parameter estimation for diffusion processes and for simulation of diffusion processes. Three examples are studied.


2011 ◽  
Vol 2011 ◽  
pp. 1-13
Author(s):  
Mario Lefebvre

Two-dimensional diffusion processes are considered between concentric circles and in angular sectors. The aim of the paper is to compute the probability that the process will hit a given part of the boundary of the stopping region first. The appropriate partial differential equations are solved explicitly by using the method of similarity solutions and the method of separation of variables. Some solutions are expressed as generalized Fourier series.


Sign in / Sign up

Export Citation Format

Share Document