scholarly journals A universal mapping problem, covering groups and automorphism groups of finite groups

1977 ◽  
Vol 7 (2) ◽  
pp. 289-296 ◽  
Author(s):  
Morton E. Harris
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Naomi Andrew

AbstractWe provide some necessary and some sufficient conditions for the automorphism group of a free product of (freely indecomposable, not infinite cyclic) groups to have Property (FA). The additional sufficient conditions are all met by finite groups, and so this case is fully characterised. Therefore, this paper generalises the work of N. Leder [Serre’s Property FA for automorphism groups of free products, preprint (2018), https://arxiv.org/abs/1810.06287v1]. for finite cyclic groups, as well as resolving the open case of that paper.


1969 ◽  
Vol 10 (1-2) ◽  
pp. 162-168 ◽  
Author(s):  
Vlastimil Dlab ◽  
B. H. Neumann

Large finite groups have large automorphism groups [4]; infinite groups may, like the infinite cyclic group, have finite automorphism groups, but their endomorphism semigroups are infinite (see Baer [1, p. 530] or [2, p. 68]). We show in this paper that the corresponding propositions for semigroups are false.


1991 ◽  
Vol 43 (4) ◽  
pp. 792-813 ◽  
Author(s):  
G. O. Michler ◽  
J. B. Olsson

In his fundamental paper [1] J. L. Alperin introduced the idea of a weight in modular representation theory of finite groups G. Let p be a prime. A p-subgroup R is called a radical subgroup of G if R = Op(NG(R)). An irreducible character φ of NG(R) is called a weight character if φ is trivial on R and belongs to a p-block of defect zero of NG(R)/R. The G-conjugacy class of the pair (R, φ) is a weight of G. Let b be the p-block of NG(R) containing φ, and let B be p-block of G. A weight (R, φ) is a B-weight for the block B of G if B = bG, which means that B and b correspond under the Brauer homomorphism. Alperin's conjecture on weights asserts that the number l*(B) of B-weights of a p-block B of a finite group G equals the number l(B) of modular characters of B.


1983 ◽  
Vol 26 (3) ◽  
pp. 297-306 ◽  
Author(s):  
K. D. Magill ◽  
P. R. Misra ◽  
U. B. Tewari

In [3] we initiated our study of the automorphism groups of a certain class of near-rings. Specifically, let P be any complex polynomial and let P denote the near-ring of all continuous selfmaps of the complex plane where addition of functions is pointwise and the product fg of two functions f and g in P is defined by fg=f∘P∘g. The near-ring P is referred to as a laminated near-ring with laminating element P. In [3], we characterised those polynomials P(z)=anzn + an−1zn−1 +…+a0 for which Aut P is a finite group. We are able to show that Aut P is finite if and only if Deg P≧3 and ai ≠ 0 for some i ≠ 0, n. In addition, we were able to completely determine those infinite groups which occur as automorphism groups of the near-rings P. There are exactly three of them. One is GL(2) the full linear group of all real 2×2 nonsingular matrices and the other two are subgroups of GL(2). In this paper, we begin our study of the finite automorphism groups of the near-rings P. We get a result which, in contrast to the situation for the infinite automorphism groups, shows that infinitely many finite groups occur as automorphism groups of the near-rings under consideration. In addition to this and other results, we completely determine Aut P when the coefficients of P are real and Deg P = 3 or 4.


1995 ◽  
Vol 118 (2) ◽  
pp. 207-213 ◽  
Author(s):  
M. Shirvani

Let G be a finite group of automorphisms of an associative ring R. Then the inner automorphisms (x↦ u−1xu = xu, for some unit u of R) contained in G form a normal subgroup G0 of G. In general, the Galois theory associated with the outer automorphism group G/G0 is quit well behaved (e.g. [7], 2·3–2·7, 2·10), while little group-theoretic restriction on the structure of G/G0 may be expected (even when R is a commutative field). The structure of the inner automorphism groups G0 does not seem to have received much attention so far. Here we classify the finite groups of inner automorphisms of division rings, i.e. the finite subgroups of PGL (1, D), where D is a division ring. Such groups also arise in the study of finite collineation groups of projective spaces (via the fundamental theorem of projective geometry, cf. [1], 2·26), and provide examples of finite groups having faithful irreducible projective representations over fields.


1978 ◽  
Vol 25 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Richard J. Greechie

AbstractA construction is given for a non-desarguesian projective plane P and an absolute-point free polarity on P such that the group of collineations of P which commute with the polarity is isomorphic to an arbitrary preassigned finite group.


Sign in / Sign up

Export Citation Format

Share Document