Interplay Between Laser Plasma Instabilities

1998 ◽  
Vol T75 (1) ◽  
pp. 7 ◽  
Author(s):  
William L. Kruer ◽  
Bedros B. Afeyan ◽  
A. E. Chou ◽  
R. K. Kirkwood ◽  
D. S. Montgomery ◽  
...  
1997 ◽  
Vol 68 (1) ◽  
pp. 672-675 ◽  
Author(s):  
Mark D. Wilke ◽  
Juan C. Fernández ◽  
Ralph R. Berggren ◽  
Richard F. Horton ◽  
David S. Montgomery ◽  
...  

2013 ◽  
Vol 20 (5) ◽  
pp. 056308 ◽  
Author(s):  
P. Michel ◽  
W. Rozmus ◽  
E. A. Williams ◽  
L. Divol ◽  
R. L. Berger ◽  
...  

2021 ◽  
Vol 29 (2) ◽  
pp. 1304
Author(s):  
Zheqiang Zhong ◽  
Bin Li ◽  
Hao Xiong ◽  
Jiwei Li ◽  
Jie Qiu ◽  
...  

2013 ◽  
Vol 272 ◽  
pp. 94-98 ◽  
Author(s):  
L. Láska ◽  
J. Krása ◽  
J. Badziak ◽  
K. Jungwirth ◽  
E. Krouský ◽  
...  

2017 ◽  
Vol 24 (3) ◽  
pp. 032707 ◽  
Author(s):  
J. R. Fein ◽  
J. P. Holloway ◽  
M. R. Trantham ◽  
P. A. Keiter ◽  
D. H. Edgell ◽  
...  

2013 ◽  
Vol 31 (1) ◽  
pp. 95-104 ◽  
Author(s):  
Wallace Manheimer

AbstractEnergetic electrons, with energy from many tens to several hundred keV can be generated in laser produced plasmas by such laser plasma instabilities as the 2ωp instability, which occurs at the quarter critical density. It is important to know not only how these are produced, but also how they are transported and deposit their energy in the interior and whether they preheat the fuel. We introduce the velocity dependent Krook approach to this problem, and compare it to other approaches that have appeared in the literature as regards accuracy and economy of incorporating in a fluid simulation. This velocity dependent Krook technique is reasonably accurate and reasonably simple and economical to incorporate into a fluid simulation.


Sign in / Sign up

Export Citation Format

Share Document