shock ignition
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 24)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Vol 127 (6) ◽  
Author(s):  
R. H. H. Scott ◽  
K. Glize ◽  
L. Antonelli ◽  
M. Khan ◽  
W. Theobald ◽  
...  

Author(s):  
Seddigheh Pourhosseini ◽  
Abbas Ghasemizad ◽  
Somayeh Rezaei ◽  
Mohammad J. Jafari

2021 ◽  
Vol 92 (1) ◽  
pp. 013501
Author(s):  
P. Koester ◽  
F. Baffigi ◽  
G. Cristoforetti ◽  
L. Labate ◽  
L. A. Gizzi ◽  
...  
Keyword(s):  

2020 ◽  
Vol 27 (12) ◽  
pp. 122705
Author(s):  
S. J. Spencer ◽  
A. G. Seaton ◽  
T. Goffrey ◽  
T. D. Arber

Author(s):  
E.D. Filippov ◽  
A.S. Martynenko ◽  
M. Cervenak ◽  
L. Antonelli ◽  
F. Baffigi ◽  
...  

2020 ◽  
Vol 37 ◽  
pp. 100892
Author(s):  
Koki Kawasaki ◽  
Yoichiro Hironaka ◽  
Yuto Maeda ◽  
Toshihiro Iwasaki ◽  
Daisuke Tanaka ◽  
...  

Author(s):  
V. T. Tikhonchuk

In this paper, I consider the motivations, recent results and perspectives for the inertial confinement fusion (ICF) studies in Europe. The European approach is based on the direct drive scheme with a preference for the central ignition boosted by a strong shock. Compared to other schemes, shock ignition offers a higher gain needed for the design of a future commercial reactor and relatively simple and technological targets, but implies a more complicated physics of laser–target interaction, energy transport and ignition. European scientists are studying physics issues of shock ignition schemes related to the target design, laser plasma interaction and implosion by the code developments and conducting experiments in collaboration with US and Japanese physicists, providing access to their installations Omega and Gekko XII. The ICF research in Europe can be further developed only if European scientists acquire their own academic laser research facility specifically dedicated to controlled fusion energy and going beyond ignition to the physical, technical, technological and operational problems related to the future fusion power plant. Recent results show significant progress in our understanding and simulation capabilities of the laser plasma interaction and implosion physics and in our understanding of material behaviour under strong mechanical, thermal and radiation loads. In addition, growing awareness of environmental issues has attracted more public attention to this problem and commissioning at ELI Beamlines the first high-energy laser facility with a high repetition rate opens the opportunity for qualitatively innovative experiments. These achievements are building elements for a new international project for inertial fusion energy in Europe. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 1)’.


Sign in / Sign up

Export Citation Format

Share Document