Convergence Properties of Perturbed Markov Chains

1998 ◽  
Vol 35 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Gareth O. Roberts ◽  
Jeffrey S. Rosenthal ◽  
Peter O. Schwartz

In this paper, we consider the question of which convergence properties of Markov chains are preserved under small perturbations. Properties considered include geometric ergodicity and rates of convergence. Perturbations considered include roundoff error from computer simulation. We are motivated primarily by interest in Markov chain Monte Carlo algorithms.

1998 ◽  
Vol 35 (01) ◽  
pp. 1-11 ◽  
Author(s):  
Gareth O. Roberts ◽  
Jeffrey S. Rosenthal ◽  
Peter O. Schwartz

In this paper, we consider the question of which convergence properties of Markov chains are preserved under small perturbations. Properties considered include geometric ergodicity and rates of convergence. Perturbations considered include roundoff error from computer simulation. We are motivated primarily by interest in Markov chain Monte Carlo algorithms.


2009 ◽  
pp. 161-183
Author(s):  
Dominic Savio Lee

This chapter describes algorithms that use Markov chains for generating exact sample values from complex distributions, and discusses their use in probabilistic data analysis and inference. Its purpose is to disseminate these ideas more widely so that their use will become more widespread, thereby improving Monte Carlo simulation results and stimulating greater research interest in the algorithms themselves. The chapter begins by introducing Markov chain Monte Carlo (MCMC), which stems from the idea that sample values from a desired distribution f can be obtained from the stationary states of an ergodic Markov chain whose stationary distribution is f. To get sample values that have distribution f exactly, it is necessary to detect when the Markov chain has reached its stationary distribution. Under certain conditions, this can be achieved by means of coupled Markov chains—these conditions and the resulting exact MCMC or perfect sampling algorithms and their applications are described.


2004 ◽  
Vol 2004 (8) ◽  
pp. 421-429 ◽  
Author(s):  
Souad Assoudou ◽  
Belkheir Essebbar

This note is concerned with Bayesian estimation of the transition probabilities of a binary Markov chain observed from heterogeneous individuals. The model is founded on the Jeffreys' prior which allows for transition probabilities to be correlated. The Bayesian estimator is approximated by means of Monte Carlo Markov chain (MCMC) techniques. The performance of the Bayesian estimates is illustrated by analyzing a small simulated data set.


2008 ◽  
Vol 40 (2) ◽  
pp. 454-472 ◽  
Author(s):  
Ivan Gentil ◽  
Bruno Rémillard

While the convergence properties of many sampling selection methods can be proven, there is one particular sampling selection method introduced in Baker (1987), closely related to ‘systematic sampling’ in statistics, that has been exclusively treated on an empirical basis. The main motivation of the paper is to start to study formally its convergence properties, since in practice it is by far the fastest selection method available. We will show that convergence results for the systematic sampling selection method are related to properties of peculiar Markov chains.


Sign in / Sign up

Export Citation Format

Share Document