A further extension of the generalized burn-in model

2003 ◽  
Vol 40 (1) ◽  
pp. 264-270 ◽  
Author(s):  
Ji Hwan Cha

In this paper, the generalized burn-in and replacement model considered by Cha (2001) is further extended to the case in which the probability of Type II failure is time dependent. Two burn-in procedures are considered and they are compared in cases when both the procedures are applicable. Under some mild conditions on the failure rate function r(t) and the Type II failure probability function p(t), the problems of determining optimal burn-in time and optimal replacement policy are considered.

2003 ◽  
Vol 40 (01) ◽  
pp. 264-270 ◽  
Author(s):  
Ji Hwan Cha

In this paper, the generalized burn-in and replacement model considered by Cha (2001) is further extended to the case in which the probability of Type II failure is time dependent. Two burn-in procedures are considered and they are compared in cases when both the procedures are applicable. Under some mild conditions on the failure rate function r(t) and the Type II failure probability function p(t), the problems of determining optimal burn-in time and optimal replacement policy are considered.


2001 ◽  
Vol 38 (02) ◽  
pp. 542-553 ◽  
Author(s):  
Ji Hwan Cha

In this paper two burn-in procedures for a general failure model are considered. There are two types of failure in the general failure model. One is Type I failure (minor failure) which can be removed by a minimal repair or a complete repair and the other is Type II failure (catastrophic failure) which can be removed only by a complete repair. During a burn-in process, with burn-in Procedure I, the failed component is repaired completely regardless of the type of failure, whereas, with burn-in Procedure II, only minimal repair is done for the Type I failure and a complete repair is performed for the Type II failure. In field use, the component is replaced by a new burned-in component at the ‘field use age’ T or at the time of the first Type II failure, whichever occurs first. Under the model, the problems of determining optimal burn-in time and optimal replacement policy are considered. The two burn-in procedures are compared in cases when both the procedures are applicable.


1991 ◽  
Vol 28 (04) ◽  
pp. 843-851 ◽  
Author(s):  
Lam Yeh

In this paper, we study a repair replacement model for a stochastically deteriorating system. For the expected discounted reward case, we show that the optimal replacement policy is of the form ‘replace at the time of the Nth failure'.


1977 ◽  
Vol 14 (02) ◽  
pp. 340-348 ◽  
Author(s):  
Robert C. Wang

In this paper we shall solve the optimal policy for the Markovian replacement model in which the state of a machine is not observable. We shall consider both discounted and average costs and discuss two examples.


2001 ◽  
Vol 38 (2) ◽  
pp. 542-553 ◽  
Author(s):  
Ji Hwan Cha

In this paper two burn-in procedures for a general failure model are considered. There are two types of failure in the general failure model. One is Type I failure (minor failure) which can be removed by a minimal repair or a complete repair and the other is Type II failure (catastrophic failure) which can be removed only by a complete repair. During a burn-in process, with burn-in Procedure I, the failed component is repaired completely regardless of the type of failure, whereas, with burn-in Procedure II, only minimal repair is done for the Type I failure and a complete repair is performed for the Type II failure. In field use, the component is replaced by a new burned-in component at the ‘field use age’ T or at the time of the first Type II failure, whichever occurs first. Under the model, the problems of determining optimal burn-in time and optimal replacement policy are considered. The two burn-in procedures are compared in cases when both the procedures are applicable.


1990 ◽  
Vol 22 (02) ◽  
pp. 494-497 ◽  
Author(s):  
Lam Yeh

In this paper, we study a similar replacement model in which the successive survival times of the system form a process with non-increasing means, whereas the consecutive repair times after failure constitute a process with non-decreasing means. The system is replaced at the time of the Nth failure since the installation or last replacement. Based on the long-run average cost per unit time, we determine the optimal replacement policy N∗ and the maximum of the long-run average reward explicitly. Under additional conditions, the policy N∗ is even optimal among all replacement policies.


1991 ◽  
Vol 28 (4) ◽  
pp. 843-851 ◽  
Author(s):  
Lam Yeh

In this paper, we study a repair replacement model for a stochastically deteriorating system. For the expected discounted reward case, we show that the optimal replacement policy is of the form ‘replace at the time of the Nth failure'.


1990 ◽  
Vol 22 (2) ◽  
pp. 494-497 ◽  
Author(s):  
Lam Yeh

In this paper, we study a similar replacement model in which the successive survival times of the system form a process with non-increasing means, whereas the consecutive repair times after failure constitute a process with non-decreasing means. The system is replaced at the time of the Nth failure since the installation or last replacement. Based on the long-run average cost per unit time, we determine the optimal replacement policy N∗ and the maximum of the long-run average reward explicitly. Under additional conditions, the policy N∗ is even optimal among all replacement policies.


1977 ◽  
Vol 14 (2) ◽  
pp. 340-348 ◽  
Author(s):  
Robert C. Wang

In this paper we shall solve the optimal policy for the Markovian replacement model in which the state of a machine is not observable. We shall consider both discounted and average costs and discuss two examples.


1994 ◽  
Vol 31 (4) ◽  
pp. 1123-1127 ◽  
Author(s):  
Yuan Lin Zhang

In this paper, a repairable system consisting of one unit and a single repairman is studied. Assume that the system after repair is not as good as new. Under this assumption, a bivariate replacement policy (T, N), where T is the working age and N is the number of failures of the system is studied. The problem is to determine the optimal replacement policy (T, N)∗such that the long-run average cost per unit time is minimized. The explicit expression of the long-run average cost per unit time is derived, and the corresponding optimal replacement policy can be determined analytically or numerically. Finally, under some conditions, we show that the policy (T, N)∗ is better than policies N∗ or T∗.


Sign in / Sign up

Export Citation Format

Share Document