replacement model
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 18)

H-INDEX

28
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Nthati Monei ◽  
Michael Hitch ◽  
Juliane Heim ◽  
Olivier Pourret ◽  
Hermann Heilmeier ◽  
...  

Abstract This study presents how nutrient availability and intercropping may influence the migration of REE when cultivated under P-deficient conditions. In a replacement model, Hordeum vulgare was intercropped with 11% Lupinus albus cv. Feodora and 11% L. angustifolius cv. Sonate. They were cultivated on two substrates, A (pH = 7.8) and B (pH = 6.6). Two nutrient solutions were supplied, with N, K, Mg and high P-supply (P+), the other with N, K, Mg, and one-third of P-supply (P-, applied to L0 and Lan only). Simultaneously, a greenhouse experiment was conducted to quantify carboxylate release. There, one group of L. albus and L. angustifolius was supplied with 200 µM K2HPO4 (P+) together with the other nutrients while a second group received 20 µM P (P-). L. albus released higher carboxylates at low P-supply than L. angustifolius. Higher P-supply did not influence the P concentrations and contents of H. vulgare neither on substrate A nor on substrate B. However, addition of P decreased the concentrations of REEs, especially in plants cultivated on alkaline soil. Nutrient accumulation decreased in H. vulgare in intercropping with L. angustifolius when cultivated on the alkaline substrate A with high P-supply. In the same conditions, the accumulation of REE in H. vulgare significantly increased. Conversely, on the acidic substrate B intercropping with L. albus decreased REE contents and concentrations in H. vulgare. Intercropping with L. angustifolius opens an opportunity for enhanced phytomining and accumulation of REE. Furthermore, intercropping with L. albus on REE polluted soils may be utilized to restrict REE accumulation in crops used for food production.



2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nse Udoh ◽  
Effanga Effanga

PurposeThis work seeks to develop a geometric imperfect preventive maintenance (PM) and replacement model (GIPMAR) for aging repairable systems due to age and prolong usage that would meet users need in three phases: within average life span, beyond average life span and beyond initial replacement age of system.Design/methodology/approachThe authors utilized the geometric process (GP) as the hazard function to characterize the increasing failure rate (IFR) of the system. The GP hazard function was incorporated into the hybridized preventive and replacement model of Lin et al. (2000). The resultant expected cost rate function was optimized to obtain optimum intervals for PM/replacement and required numbers of PM per cycle. The proposed GIPMAR model was applied to repairable systems characterized by Weibull life function and the results yielded PM/replacement schedules for three different phases of system operation.FindingsThe proposed GIPMAR model is a generalization of Lin et al. (2000) PM model that were comparable with results of earlier models and is adaptive to situations in developing countries where systems are used across the three phases of operation depicted in this work. This may be due to economic hardship and operating environment.Practical implicationsThe proposed model has provided PM/Replacement schedules for different phases of operation which was never considered. This would provide a useful guide to maintenance engineers and end-users in developing countries with a view to minimizing the average cost of maintenance as well as reducing the number of down times of systems.Social implicationsA duly implemented GIPMAR model would ensure efficient operation of systems, optimum man-hour need in the organization and guarantee customer's goodwill in a competitive environment.Originality/valueIn this work, the authors have extended Lin et al. (2000) PM model to provide PM/replacement schedules for aging repairable systems which was not provided for in earlier existing models and literature.



2021 ◽  
pp. 2101018
Author(s):  
Ze‐Wei Tao ◽  
Dillon K. Jarrell ◽  
Andrew Robinson ◽  
Elizabeth M. Cosgriff‐Hernandez ◽  
Jeffrey G. Jacot


Author(s):  
Hyunkyu Ko ◽  
Brook I. Martin ◽  
Richard E. Nelson ◽  
Christopher E. Pelt


2021 ◽  
pp. 107-122
Author(s):  
Samuel H. Logan ◽  
Warren E. Johnston


Author(s):  
R.G.U.I. Meththananda ◽  
N.C. Ganegoda ◽  
S.S.N. Perera ◽  
K.K.W.H. Erandi ◽  
Y. Jayathunga ◽  
...  


2021 ◽  
Vol 185 ◽  
pp. 108079
Author(s):  
Francois Vincent ◽  
Olivier Besson ◽  
Stefania Matteoli


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 801
Author(s):  
Victor Alfonso Rodriguez ◽  
Gabriel K. P. Barrios ◽  
Gilvandro Bueno ◽  
Luís Marcelo Tavares

It has been known that the performance of high-pressure grinding rolls (HPGR) varies as a function of the method used to laterally confine the rolls, their diameter/length (aspect) ratio as well as their condition, if new or worn. However, quantifying these effects through direct experimentation in machines with reasonably large dimensions is not straightforward, given the challenge, among others, of guaranteeing that the feed material remains unchanged. The present work couples the discrete element method (DEM) to multibody dynamics (MBD) and a novel particle replacement model (PRM) to simulate the performance of a pilot-scale HPGR grinding pellet feed. It shows that rotating side plates, in particular when fitted with studs, will result in more uniform forces along the bed, which also translates in a more constant product size along the rolls as well as higher throughput. It also shows that the edge effect is not affected by roll length, leading to substantially larger proportional edge regions for high-aspect ratio rolls. On the other hand, the product from the center region of such rolls was found to be finer when pressed at identical specific forces. Finally, rolls were found to have higher throughput, but generate a coarser product when worn following the commonly observed trapezoidal profile. The approach often used in industry to compensate for roller wear is to increase the specific force and roll speed. It has been demonstrated to be effective in maintaining product fineness and throughput, as long as the minimum safety gap is not reached.



Author(s):  
Nse Udoh ◽  
Akaninyene Udom ◽  
Fredrick Ohaegbunem

The need for suitable replacement policies are essential to minimize down time, maintenance cost and maximize the availability and reliability of equipment. On this premise, this work models the failure rate of Photocopy machines and obtain its optimal preventive maintenance policy that would prevent damage and its attendant losses to both users and end-product consumers. The failure distribution of the machine was shown to follow the Log-Logistic distribution with shape parameter, αˆ=1.723339368 and scale parameter, βˆ=763.9219635. Optimal probabilities of the distribution were obtained and utilized in both the cumulative failure function and cumulative hazard function-based replacement models to formulate a replacement maintenance policy for the machine. The failure cumulative function-based replacement model was found to be a better model which yields optimal replacement maintenance time of 166 hours at a minimum cost of 113 Naira for maintaining the machine per cycle time with 96% availability, 94% reliability and 0.07% chance of failure occurrence in the machine.



Sign in / Sign up

Export Citation Format

Share Document