scholarly journals Optimal Portfolios for Financial Markets with Wishart Volatility

2013 ◽  
Vol 50 (4) ◽  
pp. 1025-1043 ◽  
Author(s):  
Nicole Bäuerle ◽  
Zejing Li

We consider a multi asset financial market with stochastic volatility modeled by a Wishart process. This is an extension of the one-dimensional Heston model. Within this framework we study the problem of maximizing the expected utility of terminal wealth for power and logarithmic utility. We apply the usual stochastic control approach and obtain, explicitly, the optimal portfolio strategy and the value function in some parameter settings. In particular, we do this when the drift of the assets is a linear function of the volatility matrix. In this case the affine structure of the model can be exploited. In some cases we obtain a Feynman-Kac representation of the candidate value function. Though the approach we use is quite standard, the hard part is to identify when the solution of the Hamilton-Jacobi-Bellman equation is finite. This involves a couple of matrix analytic arguments. In a numerical study we discuss the influence of the investors' risk aversion on the hedging demand.

2013 ◽  
Vol 50 (04) ◽  
pp. 1025-1043 ◽  
Author(s):  
Nicole Bäuerle ◽  
Zejing Li

We consider a multi asset financial market with stochastic volatility modeled by a Wishart process. This is an extension of the one-dimensional Heston model. Within this framework we study the problem of maximizing the expected utility of terminal wealth for power and logarithmic utility. We apply the usual stochastic control approach and obtain, explicitly, the optimal portfolio strategy and the value function in some parameter settings. In particular, we do this when the drift of the assets is a linear function of the volatility matrix. In this case the affine structure of the model can be exploited. In some cases we obtain a Feynman-Kac representation of the candidate value function. Though the approach we use is quite standard, the hard part is to identify when the solution of the Hamilton-Jacobi-Bellman equation is finite. This involves a couple of matrix analytic arguments. In a numerical study we discuss the influence of the investors' risk aversion on the hedging demand.


2017 ◽  
Vol 49 (2) ◽  
pp. 515-548 ◽  
Author(s):  
Hansjörg Albrecher ◽  
Pablo Azcue ◽  
Nora Muler

Abstract We consider a two-dimensional optimal dividend problem in the context of two insurance companies with compound Poisson surplus processes, who collaborate by paying each other's deficit when possible. We study the stochastic control problem of maximizing the weighted sum of expected discounted dividend payments (among all admissible dividend strategies) until ruin of both companies, by extending results of univariate optimal control theory. In the case that the dividends paid by the two companies are equally weighted, the value function of this problem compares favorably with the one of merging the two companies completely. We identify the optimal value function as the smallest viscosity supersolution of the respective Hamilton–Jacobi–Bellman equation and provide an iterative approach to approximate it numerically. Curve strategies are identified as the natural analogue of barrier strategies in this two-dimensional context. A numerical example is given for which such a curve strategy is indeed optimal among all admissible dividend strategies, and for which this collaboration mechanism also outperforms the suitably weighted optimal dividend strategies of the two stand-alone companies.


1984 ◽  
Vol 16 (1) ◽  
pp. 16-16
Author(s):  
Domokos Vermes

We consider the optimal control of deterministic processes with countably many (non-accumulating) random iumps. A necessary and sufficient optimality condition can be given in the form of a Hamilton-jacobi-Bellman equation which is a functionaldifferential equation with boundary conditions in the case considered. Its solution, the value function, is continuously differentiable along the deterministic trajectories if. the random jumps only are controllable and it can be represented as a supremum of smooth subsolutions in the general case, i.e. when both the deterministic motion and the random jumps are controlled (cf. the survey by M. H. A. Davis (p.14)).


2018 ◽  
Vol 64 ◽  
pp. 93-110 ◽  
Author(s):  
Roxana Dumitrescu ◽  
Marie-Claire Quenez ◽  
Agnès Sulem

We study pricing and hedging for American options in an imperfect market model with default, where the imperfections are taken into account via the nonlinearity of the wealth dynamics. The payoff is given by an RCLL adapted process (ξt). We define the seller's price of the American option as the minimum of the initial capitals which allow the seller to build up a superhedging portfolio. We prove that this price coincides with the value function of an optimal stopping problem with a nonlinear expectation 𝓔g (induced by a BSDE), which corresponds to the solution of a nonlinear reflected BSDE with obstacle (ξt). Moreover, we show the existence of a superhedging portfolio strategy. We then consider the buyer's price of the American option, which is defined as the supremum of the initial prices which allow the buyer to select an exercise time τ and a portfolio strategy φ so that he/she is superhedged. We show that the buyer's price is equal to the value function of an optimal stopping problem with a nonlinear expectation, and that it can be characterized via the solution of a reflected BSDE with obstacle (ξt). Under the additional assumption of left upper semicontinuity along stopping times of (ξt), we show the existence of a super-hedge (τ, φ) for the buyer.


Author(s):  
O. Alvarez

A quasilinear elliptic equation in ℝN of Hamilton-Jacobi-Bellman type is studied. An optimal criterion for uniqueness which involves only a lower bound on the functions is given. The unique solution in this class is identified as the value function of the associated stochastic control problem.


2005 ◽  
Vol 42 (2) ◽  
pp. 362-378 ◽  
Author(s):  
Ulrich Rieder ◽  
Nicole Bäuerle

We study portfolio optimization problems in which the drift rate of the stock is Markov modulated and the driving factors cannot be observed by the investor. Using results from filter theory, we reduce this problem to one with complete observation. In the cases of logarithmic and power utility, we solve the problem explicitly with the help of stochastic control methods. It turns out that the value function is a classical solution of the corresponding Hamilton-Jacobi-Bellman equation. As a special case, we investigate the so-called Bayesian case, i.e. where the drift rate is unknown but does not change over time. In this case, we prove a number of interesting properties of the optimal portfolio strategy. In particular, using the likelihood-ratio ordering, we can compare the optimal investment in the case of observable drift rate to that in the case of unobservable drift rate. Thus, we also obtain the sign of the drift risk.


2019 ◽  
Vol 22 (02) ◽  
pp. 1850059 ◽  
Author(s):  
WESTON BARGER ◽  
MATTHEW LORIG

We assume a continuous-time price impact model similar to that of Almgren–Chriss but with the added assumption that the price impact parameters are stochastic processes modeled as correlated scalar Markov diffusions. In this setting, we develop trading strategies for a trader who desires to liquidate his inventory but faces price impact as a result of his trading. For a fixed trading horizon, we perform coefficient expansion on the Hamilton–Jacobi–Bellman (HJB) equation associated with the trader’s value function. The coefficient expansion yields a sequence of partial differential equations that we solve to give closed-form approximations to the value function and optimal liquidation strategy. We examine some special cases of the optimal liquidation problem and give financial interpretations of the approximate liquidation strategies in these cases. Finally, we provide numerical examples to demonstrate the effectiveness of the approximations.


2018 ◽  
Vol 6 (1) ◽  
pp. 85-96
Author(s):  
Delei Sheng ◽  
Linfang Xing

AbstractAn insurance-package is a combination being tie-in at least two different categories of insurances with different underwriting-yield-rate. In this paper, the optimal insurance-package and investment problem is investigated by maximizing the insurer’s exponential utility of terminal wealth to find the optimal combination-share and investment strategy. Using the methods of stochastic analysis and stochastic optimal control, the Hamilton-Jacobi-Bellman (HJB) equations are established, the optimal strategy and the value function are obtained in closed form. By comparing with classical results, it shows that the insurance-package can enhance the utility of terminal wealth, meanwhile, reduce the insurer’s claim risk.


2005 ◽  
Vol 42 (02) ◽  
pp. 362-378 ◽  
Author(s):  
Ulrich Rieder ◽  
Nicole Bäuerle

We study portfolio optimization problems in which the drift rate of the stock is Markov modulated and the driving factors cannot be observed by the investor. Using results from filter theory, we reduce this problem to one with complete observation. In the cases of logarithmic and power utility, we solve the problem explicitly with the help of stochastic control methods. It turns out that the value function is a classical solution of the corresponding Hamilton-Jacobi-Bellman equation. As a special case, we investigate the so-called Bayesian case, i.e. where the drift rate is unknown but does not change over time. In this case, we prove a number of interesting properties of the optimal portfolio strategy. In particular, using the likelihood-ratio ordering, we can compare the optimal investment in the case of observable drift rate to that in the case of unobservable drift rate. Thus, we also obtain the sign of the drift risk.


Sign in / Sign up

Export Citation Format

Share Document