american option
Recently Published Documents


TOTAL DOCUMENTS

307
(FIVE YEARS 40)

H-INDEX

30
(FIVE YEARS 2)

Wilmott ◽  
2021 ◽  
Vol 2021 (116) ◽  
pp. 30-41
Author(s):  
Leif Andersen ◽  
Mark Lake

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mohamed Maidoumi ◽  
Boubker Daafi ◽  
Mehdi Zahid

Our work is aimed at modeling the American option price by combining the dynamic programming and the optimal stopping time under two asset price models. In doing so, we attempt to control the theoretical error and illustrate the asymptotic characteristics of each model; thus, using a numerical illustration of the convergence of the option price to an equilibrium price, we can notice its behavior when the number of paths tends to be a large number; therefore, we construct a simple estimator on each slice of the number of paths according to an upper and lower bound to control our error. Finally, to highlight our approach, we test it on different asset pricing models, in particular, the exponential Lévy model compared to the simple Black and Scholes model, and we will show how the latter outperforms the former in the real market (Microsoft “MSFT” put option as an example).


2021 ◽  
Vol 30 (1) ◽  
pp. 1-10
Author(s):  
MANZOOR AHMAD ◽  
RAJSHREE MISHRA ◽  
RENU JAIN

In this paper, fractional reduced differential transform method (FRDTM) is operated to solve time fractional Black-Scholes American option pricing equation paying no dividends.The Black-Scholes model plays a significant role in the evaluation of European or American call and put options. The advantage of the proposed method to other existing methods is that it finds the solution without discretization or transformation. While using this method, no recommended assumptions are needed and hence the computational work reduces to a greater extent. Numerical experiments prove that the proposed method is efficient and valid for obtaining the solution of time fractional Black-Scholes equation governing American options. This method proves to be powerful for solving general fractional order partial differential equations (PDEs) existing in the field of Science, Engineering and other related fields.


Sign in / Sign up

Export Citation Format

Share Document