scholarly journals Large deviations for multidimensional state-dependent shot-noise processes

2015 ◽  
Vol 52 (4) ◽  
pp. 1097-1114 ◽  
Author(s):  
Amarjit Budhiraja ◽  
Pierre Nyquist

Shot-noise processes are used in applied probability to model a variety of physical systems in, for example, teletraffic theory, insurance and risk theory, and in the engineering sciences. In this paper we prove a large deviation principle for the sample-paths of a general class of multidimensional state-dependent Poisson shot-noise processes. The result covers previously known large deviation results for one-dimensional state-independent shot-noise processes with light tails. We use the weak convergence approach to large deviations, which reduces the proof to establishing the appropriate convergence of certain controlled versions of the original processes together with relevant results on existence and uniqueness.

2015 ◽  
Vol 52 (04) ◽  
pp. 1097-1114 ◽  
Author(s):  
Amarjit Budhiraja ◽  
Pierre Nyquist

Shot-noise processes are used in applied probability to model a variety of physical systems in, for example, teletraffic theory, insurance and risk theory, and in the engineering sciences. In this paper we prove a large deviation principle for the sample-paths of a general class of multidimensional state-dependent Poisson shot-noise processes. The result covers previously known large deviation results for one-dimensional state-independent shot-noise processes with light tails. We use the weak convergence approach to large deviations, which reduces the proof to establishing the appropriate convergence of certain controlled versions of the original processes together with relevant results on existence and uniqueness.


2011 ◽  
Vol 48 (03) ◽  
pp. 688-698 ◽  
Author(s):  
Ken R. Duffy ◽  
Giovanni Luca Torrisi

It is shown that the sample paths of Poisson shot noise with heavy-tailed semiexponential distributions satisfy a large deviation principle with a rate function that is insensitive to the shot shape. This demonstrates that, on the scale of large deviations, paths to rare events do not depend on the shot shape.


2011 ◽  
Vol 48 (3) ◽  
pp. 688-698
Author(s):  
Ken R. Duffy ◽  
Giovanni Luca Torrisi

It is shown that the sample paths of Poisson shot noise with heavy-tailed semiexponential distributions satisfy a large deviation principle with a rate function that is insensitive to the shot shape. This demonstrates that, on the scale of large deviations, paths to rare events do not depend on the shot shape.


Filomat ◽  
2018 ◽  
Vol 32 (2) ◽  
pp. 473-487 ◽  
Author(s):  
A. Haseena ◽  
M. Suvinthra ◽  
N. Annapoorani

A Freidlin-Wentzell type large deviation principle is derived for a class of It? type stochastic integrodifferential equations driven by a finite number of multiplicative noises of the Gaussian type. The weak convergence approach is used here to prove the Laplace principle, equivalently large deviation principle.


2018 ◽  
Vol 50 (3) ◽  
pp. 983-1004 ◽  
Author(s):  
Tanguy Cabana ◽  
Jonathan D. Touboul

Abstract We continue the analysis of large deviations for randomly connected neural networks used as models of the brain. The originality of the model relies on the fact that the directed impact of one particle onto another depends on the state of both particles, and they have random Gaussian amplitude with mean and variance scaling as the inverse of the network size. Similarly to the spatially extended case (see Cabana and Touboul (2018)), we show that under sufficient regularity assumptions, the empirical measure satisfies a large deviations principle with a good rate function achieving its minimum at a unique probability measure, implying, in particular, its convergence in both averaged and quenched cases, as well as a propagation of a chaos property (in the averaged case only). The class of model we consider notably includes a stochastic version of the Kuramoto model with random connections.


Sign in / Sign up

Export Citation Format

Share Document