Expression of the IGF-II/mannose-6-phosphate receptor mRNA and protein in the developing rat

Development ◽  
1990 ◽  
Vol 109 (1) ◽  
pp. 67-73 ◽  
Author(s):  
P.V. Senior ◽  
S. Byrne ◽  
W.J. Brammar ◽  
F. Beck

The insulin-like growth factor II (IGF-II) receptor is identical to the mannose-6-phosphate receptor (M-6-P), but its role as a somatomedin transducer is uncertain. IGF-II/M-6-P receptor expression was studied by in situ hybridization (ISH) in the developing rat. Expression occurs in extra-embryonic membranes at the time of IGF-II mRNA induction and later at paracrine/autocrine sites of IGF-II action (skeletal muscle and perichondrium) in the embryo. Highest levels of receptor mRNA occur in heart and major vessels. Postnatally transcription is strongly down-regulated. This suggests a role for the IGF-II/M-6-P receptor in IGF-II action or turnover during development distinct from its role in lysosomal transport.

1991 ◽  
Vol 125 (6) ◽  
pp. 595-602 ◽  
Author(s):  
Eva Jennische ◽  
Göran L. Andersson

Abstract. Expression of growth hormone receptor mRNA was investigated by in situ hybridization in skeletal muscle from normal and hypophysectomized rats during the first seven days of regeneration after ischemic injury. A digoxigenin-labelled RNA probe directed against the extracellular part of the rat GH receptor was used. In both normal and hypophysectomized rats distinct expression of GH receptor mRNA could be demonstrated in the regenerating muscle cells at the myoblast/myotube stage. The GH receptor expression appeared to decline with increasing maturation of the regenerated muscle fibres. In hypophysectomized rats, the regeneration process and the expression of GH receptor mRNA was delayed compared with that in normal animals. It is concluded that growth hormone may affect also the early phase of muscle regeneration in normal animals. To what extent lack of growth hormone contributes to the delayed regeneration observed in the hypophysectomized rats remains to be elucidated.


1992 ◽  
Vol 68 (3) ◽  
pp. 756-766 ◽  
Author(s):  
T. M. Perney ◽  
J. Marshall ◽  
K. A. Martin ◽  
S. Hockfield ◽  
L. K. Kaczmarek

1. The gene for a mammalian Shaw K+ channel has recently been cloned and has been shown, by alternative splicing, to give rise to two different transcripts, Kv3.1 alpha and Kv3.1 beta. To determine whether these channels are associated with specific types of neurons and to determine whether or not the alternately spliced K+ channel variants are differentially expressed, we used ribonuclease (RNase) protection assays and in situ hybridization histochemistry to localize the specific subsets of neurons containing Kv3.1 alpha and Kv3.1 beta mRNAs in the adult and developing rat brain. 2. In situ hybridization histochemistry revealed a heterogeneous expression pattern of Kv3.1 alpha mRNA in the adult rat brain. Highest Kv3.1 alpha mRNA levels were expressed in the cerebellum. High levels of hybridization were also detected in the globus pallidus, subthalamus, and substantia nigra reticulata. Many thalamic nuclei, but in particular the reticular thalamic nucleus, hybridized well to Kv3.1 alpha-specific probes. A subpopulation of cells in the cortex and hippocampus, which by their distribution and number may represent interneurons, were also found to contain high levels of Kv3.1 alpha mRNA. In the brain stem, many nuclei, including the inferior colliculus and the cochlear and vestibular nuclei, also express Kv3.1 alpha mRNA. Low or undetectable levels of Kv3.1 alpha mRNA were found in the caudate-putamen, olfactory tubercle, amygdala, and hypothalamus. 3. Kv3.1 beta mRNA was also detected in the adult rat brain by both RNase protection assays and by in situ hybridization experiments. Although the beta splice variant is expressed at lower levels than the alpha species, the overall expression pattern for both mRNAs is similar, indicating that both splice variants co-expressed in the same neurons. 4. The expression of Kv3.1 alpha and Kv3.1 beta transcripts was examined throughout development. Kv3.1 alpha mRNA is detected as early as embryonic day 17 and then increases gradually until approximately postnatal day 10, when there is a large increase in the amount of Kv3.1 alpha mRNA. Interestingly, the expression of Kv3.1 beta mRNA only increases gradually during the developmental time frame examined. Densitometric measurements indicated that Kv3.1 alpha is the predominant splice variant found in neurons of the adult brain, whereas Kv3.1 beta appears to be the predominant species in embryonic and perinatal neurons. 5. Most of the neurons that express the Kv3.1 transcripts have been characterized electrophysiologically to have narrow action potentials and display high-frequency firing rates with little or no spike adaptation.(ABSTRACT TRUNCATED AT 400 WORDS)


Cephalalgia ◽  
2018 ◽  
Vol 39 (7) ◽  
pp. 827-840 ◽  
Author(s):  
Kelly Hensley ◽  
Jim Pretorius ◽  
Brian Chan ◽  
Keith Page ◽  
Hantao Liu ◽  
...  

Background To further understand the role of pituitary adenylate cyclase-activating polypeptide 1 (PAC1) receptors in headache disorders, we mapped their expression in tissues of the trigemino-autonomic system by immunohistochemistry and in situ hybridization. Methods To optimize screening for monoclonal antibodies suitable for immunohistochemistry on formalin-fixed, paraffin-embedded tissues, we developed a new enzyme-linked immunosorbent assay using formalin-fixed, paraffin-embedded cells overexpressing human PAC1 receptors. 169G4.1 was selected from these studies for analysis of rat and human tissues and chimerized onto a mouse backbone to avoid human-on-human cross-reactivity. Immunoreactivity was compared to PAC1 receptor mRNA by in situ hybridization in both species. Results 169G4.1 immunoreactivity delineated neuronal cell bodies in the sphenopalatine ganglion in both rat and human, whereas no staining was detected in the trigeminal ganglion. The spinal trigeminal nucleus in both species showed immunoreactivity as especially strong in the upper laminae with both cell bodies and neuropil being labelled. No immunoreactivity was seen in either rat or human dura mater vessels. In situ hybridization in both species revealed mRNA in sphenopalatine ganglion neurons and the spinal trigeminal nucleus, a weak signal in the trigeminal nucleus and no signal in dural vessels. Conclusion Taken together, these data support a role for PAC1 receptors in the trigemino-autonomic system as it relates to headache pathophysiology.


Sign in / Sign up

Export Citation Format

Share Document