A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA

1999 ◽  
Vol 112 (12) ◽  
pp. 2033-2041
Author(s):  
J.J. Ludtke ◽  
G. Zhang ◽  
M.G. Sebestyen ◽  
J.A. Wolff

Although the entry of DNA into the nucleus is a crucial step of non-viral gene delivery, fundamental features of this transport process have remained unexplored. This study analyzed the effect of linear double stranded DNA size on its passive diffusion, its active transport and its NLS-assisted transport. The size limit for passive diffusion was found to be between 200 and 310 bp. DNA of 310–1500 bp entered the nuclei of digitonin treated cells in the absence of cytosolic extract by an active transport process. Both the size limit and the intensity of DNA nuclear transport could be increased by the attachment of strong nuclear localization signals. Conjugation of a 900 bp expression cassette to nuclear localization signals increased both its nuclear entry and expression in microinjected, living cells.

1971 ◽  
Vol 220 (6) ◽  
pp. 2067-2067
Author(s):  
A. H. Moawad ◽  
E. E. Daniel

Page 75: A. H. Moawad and E. E. Daniel. "Total contents and net movements of magnesium in the rat uterus." Page 80, column 2, line 44, involving the calculation of Vm the answer to the equation, –0.067 V, should read, "–0.012 V." Page 80, column 2, lines 49–54 should read, "The calculated magnesium equilibrum potential is less than the observed membrane potential, which is about 0.050 V. Therefore, some of the tissue magnesium may be excluded by an active transport process against an electrochemical gradient or by loose binding in the extracellular space."


1987 ◽  
Vol 252 (1) ◽  
pp. G100-G108
Author(s):  
J. H. Sellin ◽  
R. De Soignie

Active Na absorption (JNanet) in rabbit proximal colon in vitro is paradoxically stimulated as [Na] in the bathing media is lowered with constant osmolarity. At 140 mM [Na]o, JNanet is -0.6 +/- 0.4 mueq X cm-2 X h-1, whereas at 50 mM [Na]o JNanet is 5.0 +/- 0.7 mueq X cm-2 X h-1, P less than 0.01. JNas----m is a linear function of [Na]o, suggesting a diffusional flux. JNam----s increases almost linearly from 0 to 50 mM [Na]o but then plateaus and actually decreases from 50 to 140 mM [Na]o, consistent with inhibition of an active transport process. Both lithium and Na are equally effective inhibitors of JNanet, whereas choline and mannitol do not block the high rate of JNanet observed in decreased [Na]o. Either gluconate or proprionate replacement of Cl inhibits JNanet. Removal of K or HCO3 does not alter Na absorption. JNanet at lowered [Na]o is electrically silent and is accompanied by increased Cl absorption; it is inhibited by 10(-3) M amiloride and 10(-3) M theophylline but not by 10(-4) M bumetanide. Epinephrine is equally effective at stimulating Na absorption at 50 and 140 mM [Na]; yohimbine does not inhibit JNanet at 50 mM [Na]o. Na gradient experiments are consistent with a predominantly serosal effect of the decreased [Na]o. These results suggest that Na absorption in rabbit proximal colon in vitro is stimulated by decreased [Na]; the effect is cation specific, both Na and Li blocking the stimulatory effect.(ABSTRACT TRUNCATED AT 250 WORDS)


2004 ◽  
Vol 24 (19) ◽  
pp. 8487-8503 ◽  
Author(s):  
Deena M. Leslie ◽  
Wenzhu Zhang ◽  
Benjamin L. Timney ◽  
Brian T. Chait ◽  
Michael P. Rout ◽  
...  

ABSTRACT In yeast there are at least 14 members of the β-karyopherin protein family that govern the movement of a diverse set of cargoes between the nucleus and cytoplasm. Knowledge of the cargoes carried by each karyopherin and insight into the mechanisms of transport are fundamental to understanding constitutive and regulated transport and elucidating how they impact normal cellular functions. Here, we have focused on the identification of nuclear import cargoes for the essential yeast β-karyopherin, Kap121p. Using an overlay blot assay and coimmunopurification studies, we have identified 30 putative Kap121p cargoes. Among these were Nop1p and Sof1p, two essential trans-acting protein factors required at the early stages of ribosome biogenesis. Characterization of the Kap121p-Nop1p and Kap121p-Sof1p interactions demonstrated that, in addition to lysine-rich nuclear localization signals (NLSs), Kap121p recognizes a unique class of signals distinguished by the abundance of arginine and glycine residues and consequently termed rg-NLSs. Kap104p is also known to recognize rg-NLSs, and here we show that it compensates for the loss of Kap121p function. Sof1p is also transported by Kap121p; however, its import can be mediated by a piggyback mechanism with Nop1p bridging the interaction between Sof1p and Kap121p. Together, our data elucidate additional levels of complexity in these nuclear transport pathways.


1999 ◽  
Vol 112 (12) ◽  
pp. 2043-2048 ◽  
Author(s):  
C.M. Feldherr ◽  
D. Akin

The evolutionary changes that occur in signal-mediated nuclear transport would be expected to reflect an increasing need to regulate nucleocytoplasmic exchanges as the complexity of organisms increases. This could involve changes in both the composition and structure of the pore complex, as well as the cytosolic factors that mediate transport. In this regard, we investigated the transport process in amoebae (Amoeba proteus and Chaos carolinensis), primitive cells that would be expected to have less stringent regulatory requirements than more complex organisms. Colloidal gold particles, coated with bovine serum albumin (BSA) conjugated with simple (large T) nuclear localization signals (NLSs), bipartite (nucleoplasmin) NLSs or mutant NLSs, were used to assay nuclear import. It was found that in amoebae (1) the diameter of the particles that are able to enter the nucleoplasm is significantly less than in vertebrate cells, (2) the simple NLS is more effective in mediating nuclear import than the bipartite NLS, and (3) the nucleoporins do not appear to be glycosylated. Evidence was also obtained suggesting that, in amoebae, the simple NLS can mediate nuclear export.


1960 ◽  
Vol 198 (3) ◽  
pp. 609-613 ◽  
Author(s):  
Eugene B. Dowdle ◽  
David Schachter ◽  
Harris Schenker

Everted gut sacs prepared from segments of the proximal small intestine of rats transport Fe59 from the mucosal to the serosal surfaces against concentration gradients in vitro. The active transport mechanism is dependent upon oxidative metabolism and the generation of phosphate-bond energy, and is limited in capacity. The active transport process is maximal in the region of the small intestine immediately distal to the pylorus and diminishes with more distal segments of the gut. Addition of ascorbic acid to the incubation medium markedly increases the active transport of Fe59 in vitro.


2006 ◽  
Vol 21 (8) ◽  
pp. 2058-2067 ◽  
Author(s):  
Luke Matthews ◽  
Vishnu Baba Sundaresan ◽  
Victor Giurgiutiu ◽  
Donald J. Leo

Nastic structures are synthetic constructs capable of controllable deformation and shape change similar to plant motility, designed to imitate the biological process of nastic movement found in plants. This paper considers the mechanics and bioenergetics of a prototype nastic structure system consisting of an array of cylindrical microhydraulic actuators embedded in a polymeric plate. Non-uniform expansion/contraction of the actuators in the array may yield an overall shape change resulting in structural morphing. Actuator expansion/contraction is achieved through pressure changes produced by active transport across a bilayer membrane. The active transport process relies on ion-channel proteins that pump sucrose and water molecules across a plasma membrane against the pressure gradient. The energy required by this process is supplied by the hydrolysis of adenosine triphosphate. After reviewing the biochemistry and bioenergetics of the active transport process, the paper presents an analysis of the microhydraulic actuator mechanics predicting the resulting displacement and output energy. Experimental demonstration of fluid transport through a protein transporter follows this discussion. The bilayer membrane is formed from 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-[Phospho-L-Serine] (Sodium Salt), 1-Palmitoyl-2-Oleoyl-sn-Glycero- 3-Phosphoethanolamine lipids to support the AtSUT4 H+-sucrose cotransporter.


1997 ◽  
Vol 75 (5) ◽  
pp. 633-640 ◽  
Author(s):  
Philippe Collas ◽  
Peter Aleström

Nuclear localization signals (NLSs) are short peptides required for nuclear transport of karyophilic proteins. We review in this paper how the nuclear targeting property of NLS peptides has been taken advantage of to enhance the efficiency of nuclear uptake of transgene DNA in zebrafish and how it may improve the efficiency of transgenesis in this species. Synthetic NLS peptides can bind to plasmid DNA by ionic interactions. Cytoplasmic injection of DNA-NLS complexes in zebrafish eggs enhances the rate and the amount of plasmid DNA taken up by embryonic nuclei. Nuclear import of DNA-NLS complexes has been duplicated in vitro and exhibits energetic and cytosolic requirements similar to those for nuclear protein import. Furthermore, binding NLSs to DNA increases expression frequency of the transgene. We suggest that NLS peptides may constitute a valuable tool to improve the efficiency of transgenesis in zebrafish and other species.


1996 ◽  
Vol 76 (3) ◽  
pp. 651-685 ◽  
Author(s):  
D. A. Jans ◽  
S. Hubner

Nuclear protein transport is integral to eukaryotic cell processes such as differentiation, transformation, and the control of gene expression. Although the targeting role of nuclear localization signals (NLSs) has been known for some time, more recent results indicate that NLS-dependent nuclear protein import is precisely regulated. Phosphorylation appears to be the main mechanism controlling the nuclear transport of a number of proteins, including transcription factors such as NFkappaB, c-rel, dorsal, and SWI5 from yeast. Cytoplasmic retention factors, intra- and intermolecular NLS masking, and NLS masking by phosphorylation are some of the mechanisms by which phosphorylation specifically regulates nuclear transport. Even nuclear localization of the archetypal NLS-containing simian virus 40 large tumor antigen (T-ag) is regulated, namely by the "CcN motif," which comprises the T-ag NLS ("N") determining ultimate subcellular destination, a casein kinase II site ("C") 13 amino acids NH2-terminal to the NLS modulating the rate of nuclear import, and a cyclin-dependent kinase site ("c") adjacent to the NLS regulating the maximal level of nuclear accumulation. The CcN motif appears to be a special form of phosphorylation-regulated NLS (prNLS), where phosphorylation at site(s) close to the NLS specifically regulates NLS function. The regulation of nuclear transport through phosphorylation and prNLSs appears to be common in eukaryotic cells from yeast and plants to higher mammals.


Sign in / Sign up

Export Citation Format

Share Document