scholarly journals Classic Nuclear Localization Signals and a Novel Nuclear Localization Motif Are Required for Nuclear Transport of Porcine Parvovirus Capsid Proteins

2014 ◽  
Vol 88 (20) ◽  
pp. 11748-11759 ◽  
Author(s):  
M. Boisvert ◽  
V. Bouchard-Levesque ◽  
S. Fernandes ◽  
P. Tijssen
2012 ◽  
Vol 93 (9) ◽  
pp. 1887-1898 ◽  
Author(s):  
Ruth Popa-Wagner ◽  
Florian Sonntag ◽  
Kristin Schmidt ◽  
Jason King ◽  
Jürgen A. Kleinschmidt

Adeno-associated virus (AAV) capsid assembly occurs in the nucleus. Newly synthesized capsid proteins VP1, VP2 and VP3 contain several basic regions (BRs), which may act as nuclear localization signals (NLSs). Mutation of BR2 and BR3, located at the VP1 and VP2 N termini, marginally reduced nuclear uptake of VP1 or VP2, but not of VP3, when expressed in the context of the whole AAV type 2 (AAV2) genome. Combined mutation of BR1, BR2 and BR3 resulted in capsids with slightly reduced amounts of VP1. Expression of isolated VP1/2 N termini revealed an influence of BR3 on nuclear transport, whilst BR1 or BR2 had no effect. However, deletion of an N-terminal fragment in front of the BR elements strongly reduced nuclear uptake of VP1/2 N termini. Mutation of BR4, present in all three capsid proteins, led to their retention in the cytoplasm and to the formation of speckles, resulting in a lack of capsid formation and a significant reduction in VP levels. In a VP fragment comprising BR2, BR3 and BR4, the BR4 element was not necessary for nuclear localization. Mutation of BR5 in the C-terminal part of the VPs resulted in a speckled protein distribution in the nucleus, strongly reduced capsid assembly, and low VP1 and VP2 levels. Taken together, these results showed that BR2 and BR3 have a weak influence on nuclear transport of VP1 and VP2, whilst combined mutation of BR1, BR2 and BR3 influences the stoichiometry of VPs in assembled capsids. BR4 and BR5 play a crucial role in capsid assembly but have no NLS activity.


1999 ◽  
Vol 112 (12) ◽  
pp. 2033-2041
Author(s):  
J.J. Ludtke ◽  
G. Zhang ◽  
M.G. Sebestyen ◽  
J.A. Wolff

Although the entry of DNA into the nucleus is a crucial step of non-viral gene delivery, fundamental features of this transport process have remained unexplored. This study analyzed the effect of linear double stranded DNA size on its passive diffusion, its active transport and its NLS-assisted transport. The size limit for passive diffusion was found to be between 200 and 310 bp. DNA of 310–1500 bp entered the nuclei of digitonin treated cells in the absence of cytosolic extract by an active transport process. Both the size limit and the intensity of DNA nuclear transport could be increased by the attachment of strong nuclear localization signals. Conjugation of a 900 bp expression cassette to nuclear localization signals increased both its nuclear entry and expression in microinjected, living cells.


2004 ◽  
Vol 24 (19) ◽  
pp. 8487-8503 ◽  
Author(s):  
Deena M. Leslie ◽  
Wenzhu Zhang ◽  
Benjamin L. Timney ◽  
Brian T. Chait ◽  
Michael P. Rout ◽  
...  

ABSTRACT In yeast there are at least 14 members of the β-karyopherin protein family that govern the movement of a diverse set of cargoes between the nucleus and cytoplasm. Knowledge of the cargoes carried by each karyopherin and insight into the mechanisms of transport are fundamental to understanding constitutive and regulated transport and elucidating how they impact normal cellular functions. Here, we have focused on the identification of nuclear import cargoes for the essential yeast β-karyopherin, Kap121p. Using an overlay blot assay and coimmunopurification studies, we have identified 30 putative Kap121p cargoes. Among these were Nop1p and Sof1p, two essential trans-acting protein factors required at the early stages of ribosome biogenesis. Characterization of the Kap121p-Nop1p and Kap121p-Sof1p interactions demonstrated that, in addition to lysine-rich nuclear localization signals (NLSs), Kap121p recognizes a unique class of signals distinguished by the abundance of arginine and glycine residues and consequently termed rg-NLSs. Kap104p is also known to recognize rg-NLSs, and here we show that it compensates for the loss of Kap121p function. Sof1p is also transported by Kap121p; however, its import can be mediated by a piggyback mechanism with Nop1p bridging the interaction between Sof1p and Kap121p. Together, our data elucidate additional levels of complexity in these nuclear transport pathways.


2002 ◽  
Vol 76 (14) ◽  
pp. 7049-7059 ◽  
Author(s):  
Eleuterio Lombardo ◽  
Juan C. Ramírez ◽  
Javier Garcia ◽  
José M. Almendral

ABSTRACT This report describes the distribution of conventional nuclear localization sequences (NLS) and of a beta-stranded so-called nuclear localization motif (NLM) in the two proteins (VP1, 82 kDa; VP2, 63 kDa) forming the T=1 icosahedral capsid of the parvovirus minute virus of mice (MVM) and their functions in viral biogenesis and the onset of infection. The approximately 10 VP1 molecules assembled in the MVM particle harbor in its 142-amino-acid (aa) N-terminal-specific region four clusters of basic amino acids, here called BC1 (aa 6 to 10), BC2 (aa 87 to 90), BC3 (aa 109 to 115), and BC4 (aa 126 to 130), that fit consensus NLS and an NLM placed toward the opposite end of the polypeptide (aa 670 to 680) found to be necessary for VP2 nuclear uptake. Deletions and site-directed mutations constructed in an infectious MVM plasmid showed that BC1, BC2, and NLM are cooperative nuclear transport sequences in singly expressed VP1 subunits and that they conferred nuclear targeting competence on the VP1/VP2 oligomers arising in normal infection, while BC3 and BC4 did not display nuclear transport activity. Notably, VP1 proteins mutated at BC1 and -2, and particularly with BC1 to -4 sequences deleted, induced nuclear and cytoplasmic foci of colocalizing conjugated ubiquitin that could be rescued from the ubiquitin-proteasome degradation pathway by the coexpression of VP2 and NS2 isoforms. These results suggest a role for VP2 in viral morphogenesis by assisting cytoplasmic folding of VP1/VP2 subviral complexes, which is further supported by the capacity of NLM-bearing transport-competent VP2 subunits to recruit VP1 into the nuclear capsid assembly pathway regardless of the BC composition. Instead, all four BC sequences, which are located in the interior of the capsid, were absolutely required by the incoming infectious MVM particle for the onset of infection, suggesting either an important conformational change or a disassembly of the coat for nuclear entry of a VP1-associated viral genome. Therefore, the evolutionarily conserved BC sequences and NLM domains provide complementary nuclear transport functions to distinct supramolecular complexes of capsid proteins during the autonomous parvovirus life cycle.


1997 ◽  
Vol 75 (5) ◽  
pp. 633-640 ◽  
Author(s):  
Philippe Collas ◽  
Peter Aleström

Nuclear localization signals (NLSs) are short peptides required for nuclear transport of karyophilic proteins. We review in this paper how the nuclear targeting property of NLS peptides has been taken advantage of to enhance the efficiency of nuclear uptake of transgene DNA in zebrafish and how it may improve the efficiency of transgenesis in this species. Synthetic NLS peptides can bind to plasmid DNA by ionic interactions. Cytoplasmic injection of DNA-NLS complexes in zebrafish eggs enhances the rate and the amount of plasmid DNA taken up by embryonic nuclei. Nuclear import of DNA-NLS complexes has been duplicated in vitro and exhibits energetic and cytosolic requirements similar to those for nuclear protein import. Furthermore, binding NLSs to DNA increases expression frequency of the transgene. We suggest that NLS peptides may constitute a valuable tool to improve the efficiency of transgenesis in zebrafish and other species.


1996 ◽  
Vol 76 (3) ◽  
pp. 651-685 ◽  
Author(s):  
D. A. Jans ◽  
S. Hubner

Nuclear protein transport is integral to eukaryotic cell processes such as differentiation, transformation, and the control of gene expression. Although the targeting role of nuclear localization signals (NLSs) has been known for some time, more recent results indicate that NLS-dependent nuclear protein import is precisely regulated. Phosphorylation appears to be the main mechanism controlling the nuclear transport of a number of proteins, including transcription factors such as NFkappaB, c-rel, dorsal, and SWI5 from yeast. Cytoplasmic retention factors, intra- and intermolecular NLS masking, and NLS masking by phosphorylation are some of the mechanisms by which phosphorylation specifically regulates nuclear transport. Even nuclear localization of the archetypal NLS-containing simian virus 40 large tumor antigen (T-ag) is regulated, namely by the "CcN motif," which comprises the T-ag NLS ("N") determining ultimate subcellular destination, a casein kinase II site ("C") 13 amino acids NH2-terminal to the NLS modulating the rate of nuclear import, and a cyclin-dependent kinase site ("c") adjacent to the NLS regulating the maximal level of nuclear accumulation. The CcN motif appears to be a special form of phosphorylation-regulated NLS (prNLS), where phosphorylation at site(s) close to the NLS specifically regulates NLS function. The regulation of nuclear transport through phosphorylation and prNLSs appears to be common in eukaryotic cells from yeast and plants to higher mammals.


2006 ◽  
Vol 81 (1) ◽  
pp. 30-41 ◽  
Author(s):  
Makoto Ozawa ◽  
Ken Fujii ◽  
Yukiko Muramoto ◽  
Shinya Yamada ◽  
Seiya Yamayoshi ◽  
...  

ABSTRACT The RNA genome of influenza A virus, which forms viral ribonucleoprotein complexes (vRNPs) with viral polymerase subunit proteins (PA, PB1, and PB2) and nucleoprotein (NP), is transcribed and replicated in the nucleus. NP, the major component of vRNPs, has at least two amino acid sequences that serve as nuclear localization signals (NLSs): an unconventional NLS (residues 3 to 13; NLS1) and a bipartite NLS (residues 198 to 216; NLS2). Although both NLSs are known to play a role in nuclear transport, their relative contributions to viral replication are poorly understood. We therefore investigated their contributions to NP subcellular/subnuclear localization, viral RNA (vRNA) transcription, and viral replication. Abolishing the unconventional NLS caused NP to localize predominantly to the cytoplasm and affected its activity in vRNA transcription. However, we were able to create a virus whose NP contained amino acid substitutions in NLS1 known to abolish its nuclear localization function, although this virus was highly attenuated. These results indicate that while the unconventional NLS is not essential for viral replication, it is necessary for efficient viral mRNA synthesis. On the other hand, the bipartite NLS, whose contribution to the nuclear transport of NP is limited, was essential for vRNA transcription and NP's nucleolar accumulation. A virus with nonfunctional NLS2 could not be generated. Thus, the bipartite NLS, but not the unconventional NLS, of NP is essential for influenza A virus replication.


1994 ◽  
Vol 107 (7) ◽  
pp. 1807-1816 ◽  
Author(s):  
C. Kambach ◽  
I.W. Mattaj

Experiments investigating the nuclear import of the U2 snRNP-specific B'' protein (U2B'') are presented. U2B'' nuclear transport is shown to be able to occur independently of binding to U2 snRNA. The central segment of the protein (amino acids 90–146) encodes an unusual nuclear localization signal (NLS) that is related to that of the U1 snRNP-specific A protein. However, nuclear import of U2B'' does not depend on this NLS. Sequences in the N-terminal RNP motif of the protein are sufficient to direct nuclear transport, and evidence is presented that the interaction of U2B'' with the U2A' protein mediates this effect. This suggests that U2B'' can ‘piggy-back’ to the nucleus in association with U2A’, and thus be imported to the nucleus by two different mechanisms. U2A' nuclear transport, on the other hand, can occur independently of both U2B'' binding and of U2 snRNA.


Sign in / Sign up

Export Citation Format

Share Document