Phosphatases in the Neurones of Locusta Migratoria

1963 ◽  
Vol s3-104 (68) ◽  
pp. 475-481
Author(s):  
ROSEMARY S. LEE

Frozen sections of motor neurones in the thoracic ganglia of Locusta migratoria were treated for thiamine pyrophosphatase activity and for acid phosphatase activity. The TPPase-positive bodies range from 0.5 to 1.25 µ diameter and appear to be the small, membrane-bound inclusions described by Ashhurst and Chapman (1962) in their electron-microscope work; these are the smaller lipochondria of Shafiq (1953). The acid-phosphatase-positive bodies range from 1 to 2.5 µ, diameter and seem to be the lamellar aggregates described by Ashhurst and Chapman that are very similar to γ-cytomembranes, and which are the larger lipochondria of Shafiq. It is concluded that the enzyme content of the γ-cytomembranes is very different in this cell from their content in the vertebrate neurone, and doubt is thrown on the usefulness of TPPase activity as a marker for the Golgi apparatus in invertebrate tissue.

1968 ◽  
Vol 16 (5) ◽  
pp. 320-336 ◽  
Author(s):  
ERIC HOLTZMAN ◽  
REGINA DOMINITZ

The adrenalin-producing cells of the rat adrenal medulla have been studied by light and electron microscopy. Frozen sections of glutaraldehyde-perfused material were incubated for demonstration of "marker" enzymes for lysosomes (acid phosphatase, aryl sulfatase) and Golgi apparatus (thiamine pyrophosphatase). In addition, the uptake and fate of intravenously administered horseradish peroxidase was followed. Acid phosphatase activity is demonstrable in secretory granules, Golgi saccules, vesicles in the Golgi area and in the agranular tubules and cisternae (GERL) from which secretory granules appear to form at the inner surface of the Golgi apparatus. Endoplasmic reticulum with ribosomes on only one surface is closely apposed to both inner and outer aspects of the Golgi apparatus. Peroxidase is taken up in vesicles, tubules and "cup-like" bodies. The latter apparently transform into multivesicular bodies. A possible source of the acid phosphatase found in multivesicular bodies is the small vesicles from the Golgi apparatus or GERL.


1969 ◽  
Vol 17 (1) ◽  
pp. 23-29 ◽  
Author(s):  
JOHAN F. JONGKIND

The activities of nucleoside diphosphatases and thiamine pyrophosphatase (TPPase) that are associated with the Golgi apparatus and acid phosphatase were measured by quantitative histochemical methods both in histologically pure nucleus supraopticus and in an adjacent area of the anterior hypothalamus of the rat. In the nucleus supraopticus UDP-phosphohydrolase (UDPase), GDP-phosphohydrolase (GDPase) and TPPase activities increased 40% after a thirsting period of 3 days, while IDP-phosphohydrolase activity increased 18% and acid phosphatase activity decreased 25% after the same osmostic stress. The adjacent, nonsupraoptic anterior hypothalamic area did not show significant changes in activity of any of the enzymes studied. The activities of the Golgi-associated TPPase, UDPase and GDPase are likely to be reliable parameters for neurosecretory activity.


Parasitology ◽  
1975 ◽  
Vol 70 (3) ◽  
pp. 331-340 ◽  
Author(s):  
D. W. Halton

The ultrastructural and cytochemical changes accompanying intracellular digestion and cellular defecation in the haematin cell of Diclidophora merlangi have been described. Blood proteins of the host-fish are sequestered by endocytosis and degraded within an interconnecting network of channels that form an integral, but changing, part of the cell. The digestive enzymes involved originate in the granular endoplasmic reticulum and are packaged in the Golgi apparatus and transferred to the channels in Golgi vesicles. The rate of haemoglobin absorption and the activity of the Golgi, as judged by vesicle counts and staining intensities for thiamine pyrophosphatase activity, are stimulated by the introduction of host protein into the gut lumen. The haematin residues of digestion are extruded periodically into the lumen by exocytosis involving membrane fusion. The process is a continuous one and, in worms starved of food, can result in the complete evacuation of pigment from the cell. It is suggested that a lysosomal system operates in the digestive cycle of the haematin cell.


1965 ◽  
Vol 25 (1) ◽  
pp. 23-41 ◽  
Author(s):  
Lois Withrow Tice ◽  
Russell J. Barrnett

This paper reports the synthesis of 14 diazophthalocyanins containing Mg, Cu, or Pb as the chelated metal. To assess the usefulness of these compounds for fine structural cytochemistry, the relative coupling rates with naphthols were tested as well as the solubility of the resulting azo dyes. Three of the diazotates were reacted with tissue proteins in aldehyde-fixed material, and the density increases thus produced were compared in the electron microscope with those produced by staining similarly fixed material with the phthalocyanin dye, Alcian Blue. Finally, one of the diazotates was used as a capture reagent for the demonstration of the sites of acid phosphatase activity with the electron microscope.


1962 ◽  
Vol 15 (2) ◽  
pp. 289-312 ◽  
Author(s):  
Edward Essner ◽  
Alex B. Novikoff

The Reuber hepatoma H-35 and Morris hepatoma 5123 have been studied by electron microscopy and by cytochemical staining methods for a number of phosphatases. These studies emphasize the resemblances of the two tumors to rat liver, but they also indicate distinctive features in each of the three tissues. Secretory product accumulates within the cisternae of the Golgi apparatus that dilate to form the Golgi vacuoles. The vacuoles apparently separate, and secretory material undergoes further condensation within them. These "secretory vacuoles" possess acid phosphatase activity and may thus be considered lysosomes. The membranes of the Golgi apparatus are without acid phosphatase activity but show high levels of thiaminepyrophosphatase activity. The endoplasmic reticulum also hydrolyzes thiaminepyrophosphate but at a lower rate; it hydrolyzes the diphosphates of uridine, guanosine, and inosine rapidly. These observations and the electron microscopic images are consistent with the view that the cytomembranes are in a dynamic state of flux, movement, and transformation in the living cell, and that smooth surfaced derivatives of the endoplasmic reticulum become refashioned into the Golgi membranes as the Golgi membranes are being refashioned into those that delimit secretory vacuoles. The variations encountered in the two hepatomas are described. The electron microscope literature dealing with the relations of the Golgi apparatus to secretory granules, on the one hand, and the endoplasmic reticulum, on the other, is reviewed briefly.


1977 ◽  
Vol 74 (2) ◽  
pp. 399-413 ◽  
Author(s):  
AR Hand ◽  
C Oliver

The method of secretory granuleformation in the acinar cells of the rat exorbital lacrimal gland was studied by electron microscope morphological and cytochemical techniques. Immature secretory granules at the inner face of the Golgi apparatus were frequently attached to a narrow cisternal structure similar to GERL as described in neurons by Novikoff et al. (Novikoff, P. M., A. B. Novikoff, N. Quintana, and J.-J. Hauw. 1971. J. Cell Bio. 50:859-886). In the lacrimal gland. GERL was located adjacent to the inner Golgi saccule, or separated from it by a variable distance. Portions of GERL were often closely paralleled by modified cisternae of rough endoplasmic reticulum (RER), which lacked ribosomes on the surface adjacent to GERL. Diaminobenzidine reaction product of the secretory enzyme peroxidase was localized in the cisternae of the nuclear envelope, RER, peripheral Golgi vesicles, Golgi saccules, and immature and mature secretory granules. GERL was usually free of peroxidase reaction product or contained only a small amount. Thiamine pyrophosphatase reaction product was present in two to four inner Golgi saccules; occasionally, the innermost saccule was dilated and fenestrated, and contained less reaction product than the next adjacent saccule. Acid phosphatase (AcPase) reaction product was present in GERL, immature granules, and, rarely, in the innermost saccule, but not in the rest of the Golgi saccules. Thick sections of AcPase preparations viewed at 100 kV revealed that GERL consisted of cisternal, and fenestrated or tublular portions. The immature granules were attached to GERL by multiple connections to the tublular portions. These results suggest that, in the rat exorbital lacrimal gland, the Golgi saccules participate in the transport of secretory proteins, and that GERL is involved in the formation of secretory granules.


1968 ◽  
Vol 37 (2) ◽  
pp. 329-344 ◽  
Author(s):  
Herbert M. Dembitzer

Suspensions of Blepharisma intermedium were fed latex particles for 5 min and then were separated from the particles by filtration. Samples were fixed at intervals after separation and incubated to demonstrate acid phosphatase activity. They were subsequently embedded and sectioned for electron microscopy. During formation of the food vacuole, the vacuolar membrane is acid phosphatase-negative. Within 5 min, dumbbell-shaped acid phosphatase-positive bodies, possibly derived from the the acid phosphatase-positive Golgi apparatus, apparently fuse with the food vacuole and render it acid phosphatase-positive. A larger type of acid phosphatase-positive, vacuolated body may also fuse with the food vacuole at later stages. At about 20 min after formation, acid phosphatase-positive secondary pinocytotic vesicles pinch off from the food vacuoles and approach a separate system of membrane-bounded spaces. By 1 hr after formation, the food vacuole becomes acid phosphatase-negative, and the undigested latex particles are voided into the membrane-bounded spaces. The membrane-bounded spaces are closely associated with the food vacuole at all stages of digestion and are generally acid phosphatase-negative. Within the membrane-bounded spaces, dense, pleomorphic, granular bodies are found, in which are embedded mitochondria, paraglycogen granules, membrane-limited acid phosphatase-containing structures, and Golgi apparatuses. The granular bodies may serve as vehicles for the transport of organelles through the extensive, ramifying membrane-bounded spaces.


Sign in / Sign up

Export Citation Format

Share Document