Control of Central Pattern Generators by an Identified Neurone in Crustacea: Activation of the Gastric Mill Motor Pattern by a Neurone Known to Modulate the Pyloric Network

1988 ◽  
Vol 136 (1) ◽  
pp. 53-87
Author(s):  
PATSY S. DICKINSON ◽  
FRÉDÉRIC NAGY ◽  
MAURICE MOULINS

In the red lobster (Palinurus vulgaris), an identified neurone, the anterior pyloric modulator neurone (APM), which has previously been shown to modulate the output of the pyloric central pattern generator, was shown to modulate the output of the gastric mill central pattern generator. APM activity induced a rhythm when the network was silent and increased rhythmic activity when the network was already active. Rhythmic activity was induced whether APM fired in single bursts, tonically or in repetitive bursts. A single burst in APM induced a rhythm which considerably outlasted the burst, whereas repetitive bursts effectively entrained the gastric oscillator. These modulations involved two major mechanisms. (1) APM induced or enhanced plateau properties in some of the gastric mill neurones. (2) APM activated the extrinsic inputs to the network, thus increasing the excitatory synaptic drive to most of the neurones of the network. As a result, when APM was active, all the neurones of the pattern generator actively participated in the rhythmic activity. By its actions on two separate but behaviourally related neural networks, the APM neurone may be able to control an entire concert of related types of behaviour.

1997 ◽  
Vol 78 (6) ◽  
pp. 3415-3427 ◽  
Author(s):  
Rene F. Jansen ◽  
Anton W. Pieneman ◽  
Andries ter Maat

Jansen, Rene F., Anton W. Pieneman, and Andries ter Maat. Behavior-dependent activities of a central pattern generator in freely behaving Lymnaea stagnalis. J. Neurophysiol. 78: 3415–3427, 1997. Cyclic or repeated movements are thought to be driven by networks of neurons (central pattern generators) that are dynamic in their connectivity. During two unrelated behaviors (feeding and egg laying), we investigated the behavioral output of the buccal pattern generator as well as the electrical activity of a pair of identified interneurons that have been shown to be involved in setting the level of activity of this pattern generator (PG). Analysis of the quantile plots of the parameters that describe the behavior (movements of the buccal mass) reveals that during egg laying, the behavioral output of the PG is different compared with that during feeding. Comparison of the average durations of the different parts of the buccal movements showed that during egg laying, the duration of one specific part of buccal movement is increased. Correlated with these changes in the behavioral output of the PG were changes in the firing rate of the cerebral giant neurons (CGC), a pair of interneurons that have been shown to modulate the activity of the PG by means of multiple synaptic contacts with neurons in the buccal ganglion. Interval- and autocorrelation histograms of the behavioral output and CGC spiking show that both the PG output and the spiking properties of the CGCs are different when comparing egg-laying animals with feeding animals. Analysis of the timing relations between the CGCs and the behavioral output of the PG showed that both during feeding and egg laying, the electrical activity of the CGCs is largely in phase with the PG output, although small changes occur. We discuss how these results lead to specific predictions about the kinds of changes that are likely to occur when the animal switches the PG from feeding to egg laying and how the hormones that cause egg laying are likely to be involved.


2012 ◽  
Vol 108 (10) ◽  
pp. 2846-2856 ◽  
Author(s):  
Mark D. Kvarta ◽  
Ronald M. Harris-Warrick ◽  
Bruce R. Johnson

Synapses show short-term activity-dependent dynamics that alter the strength of neuronal interactions. This synaptic plasticity can be tuned by neuromodulation as a form of metaplasticity. We examined neuromodulator-induced metaplasticity at a graded chemical synapse in a model central pattern generator (CPG), the pyloric network of the spiny lobster stomatogastric ganglion. Dopamine, serotonin, and octopamine each produce a unique motor pattern from the pyloric network, partially through their modulation of synaptic strength in the network. We characterized synaptic depression and its amine modulation at the graded synapse from the pyloric dilator neuron to the lateral pyloric neuron (PD→LP synapse), driving the PD neuron with both long square pulses and trains of realistic waveforms over a range of presynaptic voltages. We found that the three amines can differentially affect the amplitude of graded synaptic transmission independently of the synaptic dynamics. Low concentrations of dopamine had weak and variable effects on the strength of the graded inhibitory postsynaptic potentials (gIPSPs) but reliably accelerated the onset of synaptic depression and recovery from depression independently of gIPSP amplitude. Octopamine enhanced gIPSP amplitude but decreased the amount of synaptic depression; it slowed the onset of depression and accelerated its recovery during square pulse stimulation. Serotonin reduced gIPSP amplitude but increased the amount of synaptic depression and accelerated the onset of depression. These results suggest that amine-induced metaplasticity at graded chemical synapses can alter the parameters of synaptic dynamics in multiple and independent ways.


2013 ◽  
Vol 23 (08) ◽  
pp. 1350142 ◽  
Author(s):  
J. HURTADO-LÓPEZ ◽  
D. F. RAMÍREZ-MORENO

In this work, we present a bifurcation analysis of a network of symmetrically coupled units modeling central pattern generators for quadruped locomotion. Here, we show a reduced model and characterize its dynamics and the dependence of the model behavior when one of the parameters is varied.


Author(s):  
Jiaqi Zhang ◽  
Xiaolei Han ◽  
Xueying Han

Creating effective locomotion for a legged robot is a challenging task. Central pattern generators have been widely used to control robot locomotion. However, one significant disadvantage of the central pattern generator method is its inability to design high-quality walks because it only produces sine or quasi-sine signals for motor control as compared to most cases in which the expected control signals are more advanced. Control accuracy is therefore diminished when traditional methods are replaced by central pattern generators resulting in unaesthetically pleasing walking robots. In this paper, we present a set of solutions, based on testings of Sony’s four-legged robotic dog (AIBO), which produces the same walking quality as traditional methods. First, we designed a method based on both evolution and learning to optimize the walking gait. Second, a central pattern generator model was put forth to enabled AIBO to learn from arbitrary periodic inputs, which resulted in the replication of the optimized gait to ensure high-quality walking. Lastly, an accelerator sensor feedback was introduced so that AIBO could detect uphill and downhill terrains and change its gait according to the surrounding environment. Simulations were performed to verify this method.


2007 ◽  
Vol 19 (4) ◽  
pp. 974-993 ◽  
Author(s):  
Gregory R. Stiesberg ◽  
Marcelo Bussotti Reyes ◽  
Pablo Varona ◽  
Reynaldo D. Pinto ◽  
Ramón Huerta

A study of a general central pattern generator (CPG) is carried out by means of a measure of the gain of information between the number of available topology configurations and the output rhythmic activity. The neurons of the CPG are chaotic Hindmarsh-Rose models that cooperate dynamically to generate either chaotic or regular spatiotemporal patterns. These model neurons are implemented by computer simulations and electronic circuits. Out of a random pool of input configurations, a small subset of them maximizes the gain of information. Two important characteristics of this subset are emphasized: (1) the most regular output activities are chosen, and (2) none of the selected input configurations are networks with open topology. These two principles are observed in living CPGs as well as in model CPGs that are the most efficient in controlling mechanical tasks, and they are evidence that the information-theoretical analysis can be an invaluable tool in searching for general properties of CPGs.


2005 ◽  
Vol 93 (3) ◽  
pp. 1255-1265 ◽  
Author(s):  
Björn Ch. Ludwar ◽  
Marie L. Göritz ◽  
Joachim Schmidt

Locomotion requires the coordination of movements across body segments, which in walking animals is expressed as gaits. We studied the underlying neural mechanisms of this coordination in a semi-intact walking preparation of the stick insect Carausius morosus. During walking of a single front leg on a treadmill, leg motoneuron (MN) activity tonically increased and became rhythmically modulated in the ipsilateral deafferented and deefferented mesothoracic (middle leg) ganglion. The pattern of modulation was correlated with the front leg cycle and specific for a given MN pool, although it was not consistent with functional leg movements for all MN pools. In an isolated preparation of a pair of ganglia, where one ganglion was made rhythmically active by application of pilocarpine, we found no evidence for coupling between segmental central pattern generators (CPGs) that could account for the modulation of MN activity observed in the semi-intact walking preparation. However, a third preparation provided evidence that signals from the front leg's femoral chordotonal organ (fCO) influenced activity of ipsilateral MNs in the adjacent mesothoracic ganglion. These intersegmental signals could be partially responsible for the observed MN activity modulation during front leg walking. While afferent signals from a single walking front leg modulate the activity of MNs in the adjacent segment, additional afferent signals, local or from contralateral or posterior legs, might be necessary to produce the functional motor pattern observed in freely walking animals.


1999 ◽  
Vol 81 (2) ◽  
pp. 950-953 ◽  
Author(s):  
Ralph A. DiCaprio

Gating of afferent input by a central pattern generator. Intracellular recordings from the sole proprioceptor (the oval organ) in the crab ventilatory system show that the nonspiking afferent fibers from this organ receive a cyclic hyperpolarizing inhibition in phase with the ventilatory motor pattern. Although depolarizing and hyperpolarizing current pulses injected into a single afferent will reset the ventilatory motor pattern, the inhibitory input is of sufficient magnitude to block afferent input to the ventilatory central pattern generator (CPG) for ∼50% of the cycle period. It is proposed that this inhibitory input serves to gate sensory input to the ventilatory CPG to provide an unambiguous input to the ventilatory CPG.


2018 ◽  
Vol 119 (2) ◽  
pp. 422-440 ◽  
Author(s):  
Paul S. G. Stein

Neuronal networks in the turtle spinal cord have considerable computational complexity even in the absence of connections with supraspinal structures. These networks contain central pattern generators (CPGs) for each of several behaviors, including three forms of scratch, two forms of swim, and one form of flexion reflex. Each behavior is activated by a specific set of cutaneous or electrical stimuli. The process of selection among behaviors within the spinal cord has multisecond memories of specific motor patterns. Some spinal cord interneurons are partially shared among several CPGs, whereas other interneurons are active during only one type of behavior. Partial sharing is a proposed mechanism that contributes to the ability of the spinal cord to generate motor pattern blends with characteristics of multiple behaviors. Variations of motor patterns, termed deletions, assist in characterization of the organization of the pattern-generating components of CPGs. Single-neuron recordings during both normal and deletion motor patterns provide support for a CPG organizational structure with unit burst generators (UBGs) whose members serve a direction of a specific degree of freedom of the hindlimb, e.g., the hip-flexor UBG, the hip-extensor UBG, the knee-flexor UBG, the knee-extensor UBG, etc. The classic half-center hypothesis that includes all the hindlimb flexors in a single flexor half-center and all the hindlimb extensors in a single extensor half-center lacks the organizational complexity to account for the motor patterns produced by turtle spinal CPGs. Thus the turtle spinal cord is a valuable model system for studies of mechanisms responsible for selection and generation of motor behaviors. NEW & NOTEWORTHY The concept of the central pattern generator (CPG) is a major tenet in motor neuroethology that has influenced the design and interpretations of experiments for over a half century. This review concentrates on the turtle spinal cord and describes studies from the 1970s to the present responsible for key developments in understanding the CPG mechanisms responsible for the selection and production of coordinated motor patterns during turtle hindlimb motor behaviors.


2000 ◽  
Vol 84 (3) ◽  
pp. 1186-1193 ◽  
Author(s):  
Peter T. Morgan ◽  
Ray Perrins ◽  
Philip E. Lloyd ◽  
Klaudiusz R. Weiss

Intrinsic and extrinsic neuromodulation are both thought to be responsible for the flexibility of the neural circuits (central pattern generators) that control rhythmic behaviors. Because the two forms of modulation have been studied in different circuits, it has been difficult to compare them directly. We find that the central pattern generator for biting in Aplysia is modulated both extrinsically and intrinsically. Both forms of modulation increase the frequency of motor programs and shorten the duration of the protraction phase. Extrinsic modulation is mediated by the serotonergic metacerebral cell (MCC) neurons and is mimicked by application of serotonin. Intrinsic modulation is mediated by the cerebral peptide-2 (CP-2) containing CBI-2 interneurons and is mimicked by application of CP-2. Since the effects of CBI-2 and CP-2 occlude each other, the modulatory actions of CBI-2 may be mediated by CP-2 release. Although the effects of intrinsic and extrinsic modulation are similar, the neurons that mediate them are active predominantly at different times, suggesting a specialized role for each system. Metacerebral cell (MCC) activity predominates in the preparatory (appetitive) phase and thus precedes the activation of CBI-2 and biting motor programs. Once the CBI-2s are activated and the biting motor program is initiated, MCC activity declines precipitously. Hence extrinsic modulation prefacilitates biting, whereas intrinsic modulation occurs during biting. Since biting inhibits appetitive behavior, intrinsic modulation cannot be used to prefacilitate biting in the appetitive phase. Thus the sequential use of extrinsic and intrinsic modulation may provide a means for premodulation of biting without the concomitant disruption of appetitive behaviors.


2016 ◽  
Vol 371 (1685) ◽  
pp. 20150057 ◽  
Author(s):  
Paul S. Katz

Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization.


Sign in / Sign up

Export Citation Format

Share Document