quadruped locomotion
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 16)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Wenhao Tan ◽  
Xing Fang ◽  
Wei Zhang ◽  
Ran Song ◽  
Teng Chen ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Shura Suzuki ◽  
Takeshi Kano ◽  
Auke J. Ijspeert ◽  
Akio Ishiguro

Deciphering how quadrupeds coordinate their legs and other body parts, such as the trunk, head, and tail (i.e., body–limb coordination), can provide informative insights to improve legged robot mobility. In this study, we focused on sprawling locomotion of the salamander and aimed to understand the body–limb coordination mechanisms through mathematical modeling and simulations. The salamander is an amphibian that moves on the ground by coordinating the four legs with lateral body bending. It uses standing and traveling waves of lateral bending that depend on the velocity and stepping gait. However, the body–limb coordination mechanisms responsible for this flexible gait transition remain elusive. This paper presents a central-pattern-generator-based model to reproduce spontaneous gait transitions, including changes in bending patterns. The proposed model implements four feedback rules (feedback from limb-to-limb, limb-to-body, body-to-limb, and body-to-body) without assuming any inter-oscillator coupling. The interplay of the feedback rules establishes a self-organized body–limb coordination that enables the reproduction of the speed-dependent gait transitions of salamanders, as well as various gait patterns observed in sprawling quadruped animals. This suggests that sensory feedback plays an essential role in flexible body–limb coordination during sprawling quadruped locomotion.


2021 ◽  
pp. 167-177
Author(s):  
Kangqiao Zhao ◽  
Feng Lin ◽  
Hock Soon Seah

Author(s):  
Alexander L. Mitchell ◽  
Martin Engelcke ◽  
Oiwi Parker Jones ◽  
David Surovik ◽  
Siddhant Gangapurwala ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4911
Author(s):  
Qian Hao ◽  
Zhaoba Wang ◽  
Junzheng Wang ◽  
Guangrong Chen

Stability is a prerequisite for legged robots to execute tasks and traverse rough terrains. To guarantee the stability of quadruped locomotion and improve the terrain adaptability of quadruped robots, a stability-guaranteed and high terrain adaptability static gait for quadruped robots is addressed. Firstly, three chosen stability-guaranteed static gaits: intermittent gait 1&2 and coordinated gait are investigated. In addition, then the static gait: intermittent gait 1, which is with the biggest stability margin, is chosen to do a further research about quadruped robots walking on rough terrains. Secondly, a position/force based impedance control is employed to achieve a compliant behavior of quadruped robots on rough terrains. Thirdly, an exploratory gait planning method on uneven terrains with touch sensing and an attitude-position adjustment strategy with terrain estimation are proposed to improve the terrain adaptability of quadruped robots. Finally, the proposed methods are validated by simulations.


2020 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Liqin Liu ◽  
◽  
Xiaoxiao Liu ◽  
Chunrui Zhang ◽  

Author(s):  
Fei Guo ◽  
Shoukun Wang ◽  
Junzheng Wang ◽  
Huan Yu

Purpose In this research, the authors established a hierarchical motion planner for quadruped locomotion, which enables a parallel wheel-quadruped robot, the “BIT-NAZA” robot, to traverse rough three-dimensional (3-D) terrain. Design/methodology/approach Presented is a novel wheel-quadruped mobile robot with parallel driving mechanisms and based on the Stewart six degrees of freedom (6-DOF) platform. The task for traversing rough terrain is decomposed into two prospects: one is the configuration selection in terms of a local foothold cost map, in which the kinematic feasibility of parallel mechanism and terrain features are satisfied in heuristic search planning, and the other one is a whole-body controller to complete smooth and continuous motion transitions. Findings A fan-shaped foot search region focuses on footholds with a strong possibility of becoming foot placement, simplifying computation complexity. A receding horizon avoids kinematic deadlock during the search process and improves robot adaptation. Research limitations/implications Both simulation and experimental results validated the proposed scenario available and appropriate for quadruped locomotion to traverse challenging 3-D terrains. Originality/value This paper analyzes kinematic workspace for a parallel robot with 6-DOF Stewart mechanism on both body and foot. A fan-shaped foot search region enhances computation efficiency. Receding horizon broadens the preview search to decrease the possibility of deadlock minima resulting from terrain variation.


Sign in / Sign up

Export Citation Format

Share Document