NONLINEAR DYNAMICS OF AN OSCILLATORY NEURAL NETWORK ACTING AS A MOTOR CENTRAL PATTERN GENERATOR

2013 ◽  
Vol 23 (08) ◽  
pp. 1350142 ◽  
Author(s):  
J. HURTADO-LÓPEZ ◽  
D. F. RAMÍREZ-MORENO

In this work, we present a bifurcation analysis of a network of symmetrically coupled units modeling central pattern generators for quadruped locomotion. Here, we show a reduced model and characterize its dynamics and the dependence of the model behavior when one of the parameters is varied.

1997 ◽  
Vol 78 (6) ◽  
pp. 3415-3427 ◽  
Author(s):  
Rene F. Jansen ◽  
Anton W. Pieneman ◽  
Andries ter Maat

Jansen, Rene F., Anton W. Pieneman, and Andries ter Maat. Behavior-dependent activities of a central pattern generator in freely behaving Lymnaea stagnalis. J. Neurophysiol. 78: 3415–3427, 1997. Cyclic or repeated movements are thought to be driven by networks of neurons (central pattern generators) that are dynamic in their connectivity. During two unrelated behaviors (feeding and egg laying), we investigated the behavioral output of the buccal pattern generator as well as the electrical activity of a pair of identified interneurons that have been shown to be involved in setting the level of activity of this pattern generator (PG). Analysis of the quantile plots of the parameters that describe the behavior (movements of the buccal mass) reveals that during egg laying, the behavioral output of the PG is different compared with that during feeding. Comparison of the average durations of the different parts of the buccal movements showed that during egg laying, the duration of one specific part of buccal movement is increased. Correlated with these changes in the behavioral output of the PG were changes in the firing rate of the cerebral giant neurons (CGC), a pair of interneurons that have been shown to modulate the activity of the PG by means of multiple synaptic contacts with neurons in the buccal ganglion. Interval- and autocorrelation histograms of the behavioral output and CGC spiking show that both the PG output and the spiking properties of the CGCs are different when comparing egg-laying animals with feeding animals. Analysis of the timing relations between the CGCs and the behavioral output of the PG showed that both during feeding and egg laying, the electrical activity of the CGCs is largely in phase with the PG output, although small changes occur. We discuss how these results lead to specific predictions about the kinds of changes that are likely to occur when the animal switches the PG from feeding to egg laying and how the hormones that cause egg laying are likely to be involved.


Author(s):  
Jiaqi Zhang ◽  
Xiaolei Han ◽  
Xueying Han

Creating effective locomotion for a legged robot is a challenging task. Central pattern generators have been widely used to control robot locomotion. However, one significant disadvantage of the central pattern generator method is its inability to design high-quality walks because it only produces sine or quasi-sine signals for motor control as compared to most cases in which the expected control signals are more advanced. Control accuracy is therefore diminished when traditional methods are replaced by central pattern generators resulting in unaesthetically pleasing walking robots. In this paper, we present a set of solutions, based on testings of Sony’s four-legged robotic dog (AIBO), which produces the same walking quality as traditional methods. First, we designed a method based on both evolution and learning to optimize the walking gait. Second, a central pattern generator model was put forth to enabled AIBO to learn from arbitrary periodic inputs, which resulted in the replication of the optimized gait to ensure high-quality walking. Lastly, an accelerator sensor feedback was introduced so that AIBO could detect uphill and downhill terrains and change its gait according to the surrounding environment. Simulations were performed to verify this method.


1988 ◽  
Vol 136 (1) ◽  
pp. 53-87
Author(s):  
PATSY S. DICKINSON ◽  
FRÉDÉRIC NAGY ◽  
MAURICE MOULINS

In the red lobster (Palinurus vulgaris), an identified neurone, the anterior pyloric modulator neurone (APM), which has previously been shown to modulate the output of the pyloric central pattern generator, was shown to modulate the output of the gastric mill central pattern generator. APM activity induced a rhythm when the network was silent and increased rhythmic activity when the network was already active. Rhythmic activity was induced whether APM fired in single bursts, tonically or in repetitive bursts. A single burst in APM induced a rhythm which considerably outlasted the burst, whereas repetitive bursts effectively entrained the gastric oscillator. These modulations involved two major mechanisms. (1) APM induced or enhanced plateau properties in some of the gastric mill neurones. (2) APM activated the extrinsic inputs to the network, thus increasing the excitatory synaptic drive to most of the neurones of the network. As a result, when APM was active, all the neurones of the pattern generator actively participated in the rhythmic activity. By its actions on two separate but behaviourally related neural networks, the APM neurone may be able to control an entire concert of related types of behaviour.


2001 ◽  
Vol 42 (4) ◽  
pp. 291-326 ◽  
Author(s):  
Pietro-Luciano Buono ◽  
Martin Golubitsky

2000 ◽  
Vol 84 (3) ◽  
pp. 1186-1193 ◽  
Author(s):  
Peter T. Morgan ◽  
Ray Perrins ◽  
Philip E. Lloyd ◽  
Klaudiusz R. Weiss

Intrinsic and extrinsic neuromodulation are both thought to be responsible for the flexibility of the neural circuits (central pattern generators) that control rhythmic behaviors. Because the two forms of modulation have been studied in different circuits, it has been difficult to compare them directly. We find that the central pattern generator for biting in Aplysia is modulated both extrinsically and intrinsically. Both forms of modulation increase the frequency of motor programs and shorten the duration of the protraction phase. Extrinsic modulation is mediated by the serotonergic metacerebral cell (MCC) neurons and is mimicked by application of serotonin. Intrinsic modulation is mediated by the cerebral peptide-2 (CP-2) containing CBI-2 interneurons and is mimicked by application of CP-2. Since the effects of CBI-2 and CP-2 occlude each other, the modulatory actions of CBI-2 may be mediated by CP-2 release. Although the effects of intrinsic and extrinsic modulation are similar, the neurons that mediate them are active predominantly at different times, suggesting a specialized role for each system. Metacerebral cell (MCC) activity predominates in the preparatory (appetitive) phase and thus precedes the activation of CBI-2 and biting motor programs. Once the CBI-2s are activated and the biting motor program is initiated, MCC activity declines precipitously. Hence extrinsic modulation prefacilitates biting, whereas intrinsic modulation occurs during biting. Since biting inhibits appetitive behavior, intrinsic modulation cannot be used to prefacilitate biting in the appetitive phase. Thus the sequential use of extrinsic and intrinsic modulation may provide a means for premodulation of biting without the concomitant disruption of appetitive behaviors.


Sign in / Sign up

Export Citation Format

Share Document