Contractile properties of the striated adductor muscle in the bay scallop Argopecten irradians at several temperatures

1993 ◽  
Vol 176 (1) ◽  
pp. 175-193 ◽  
Author(s):  
J. M. Olson ◽  
R. L. Marsh

The isometric and isotonic contractile properties of the cross-striated adductor muscle of the bay scallop (Argopecten irradians) were measured in vitro at 10, 15 and 20 degrees C. The length at which twitch force was maximal as a function of the closed length in situ (L0/Lcl) averaged 1.38 +/− 0.01 (mean +/− S.E.M.) at 10 degrees C. This length is very close to the typical length at maximum gape during natural swimming at this temperature. Passive force was very low over the range of lengths measured here; at L0, passive force averaged approximately 0.08 N cm-2, or only 0.5% of the corresponding peak twitch force. The mean peak isometric twitch force (Ptw,max) at 10 degrees C was 21.43 +/− 0.68 N cm-2 (S.E.M.), and the ratio of peak twitch force to tetanic force (Ptw,max/P0) averaged 0.89 +/− 0.01. Temperature did not affect either twitch force (Ptw), once fatigue was taken into account, or Ptw,max/P0. In contrast, the time-related properties of twitch contractions (latent period, tL; time to peak tension, tPtw; and time from peak tension to half-relaxation, t50%R) were positively modified by temperature at all temperatures measured (Q10 > 1.8). All three properties were more temperature-sensitive over the range 10–15 degrees C than over the range 15–20 degrees C. The force-velocity relationships of the striated adductor muscle were fitted to the hyperbolic-linear (HYP-LIN) equation. The force-velocity curves of the striated adductor muscle of the scallop were strongly influenced by temperature. Maximal velocity at zero force (Vmax), and therefore maximal power output, increased significantly with temperature. The Q10 over the temperature range 10–15 degrees C (1.42) was significantly lower than that over the range 15–20 degrees C (2.41). The shape of the force-velocity relationship, assessed through comparisons of the power ratio (Wmax/VmaxP0), was not influenced by temperature.

1986 ◽  
Vol 126 (1) ◽  
pp. 63-77 ◽  
Author(s):  
R. L. Marsh ◽  
A. F. Bennett

The isometric and isotonic contractile properties of fast-twitch glycolytic fibres of the iliofibularis muscle (FG-IF) in the lizard Sceloporus occidentalis were measured in vitro at 5 degrees C intervals form 10 to 40 degrees C. The mean isometric parameters at 35 degrees C, the preferred body temperature of this species, were as follows: maximum isometric force (Po), 187 +/− 8 (S.E.M.) kNm-2; ratio of twitch force to tetanic force (PTW/Po), 0.46 +/− 0.02; time to peak twitch tension (tPTW), 7.0 +/− 0.3 ms; and time from peak twitch force to 50% relaxation (t50%), 8.2 +/− 0.3 ms. From 20 to 35 degrees C Po was almost constant (within 8% of the value at 35 degrees C). At 10 and 15 degrees C C. Po dropped to approximately 80% of the value at 35 degrees C. Po was very unstable at 40 degrees C. PTW/Po was almost constant at all temperatures. The time-related isometric parameters were positively modified by temperature at all temperatures measured (Q10 greater than 1.9). The force-velocity curves of the FG-IF deviated from the simple hyperbolic relation of A. V. Hill's characteristic equation. We present two alternative equations for fitting these data. These equations resulted in residual sums of squares from nonlinear least-squares analysis that were at least seven-fold lower than those from Hill's equation. The equation that best describes our data is a hyperbola modified by the addition of a linear component: V = B(1 - P/Po)/(A + P/Po) + C(1 - P/Po). To describe the curvature of this or any other force-velocity relationship, we propose the power ratio, Wmax/VmaxPo (where Wmax is the maximum power calculated from the force-velocity relationship and Vmax is the predicted maximum velocity of shortening at zero force). Vmax of the FG-IF was 21.9LoS-1 at 35 degrees C (where Lo is muscle length). This parameter was directly related to temperature between 10 and 35 degrees C with Q10 greater than 1.8. The shape of the force-velocity curve is not influenced by temperature (Wmax/VmaxPo = 0.11).


2008 ◽  
Vol 36 (5) ◽  
pp. 1167-1173 ◽  
Author(s):  
Ling Zhu ◽  
Linsheng Song ◽  
Wei Xu ◽  
Pei-Yuan Qian

Sign in / Sign up

Export Citation Format

Share Document