endogenous proteases
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 19)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 22 (16) ◽  
pp. 8677
Author(s):  
Nunzianna Doti ◽  
Mario Mardirossian ◽  
Annamaria Sandomenico ◽  
Menotti Ruvo ◽  
Andrea Caporale

Natural and de novo designed peptides are gaining an ever-growing interest as drugs against several diseases. Their use is however limited by the intrinsic low bioavailability and poor stability. To overcome these issues retro-inverso analogues have been investigated for decades as more stable surrogates of peptides composed of natural amino acids. Retro-inverso peptides possess reversed sequences and chirality compared to the parent molecules maintaining at the same time an identical array of side chains and in some cases similar structure. The inverted chirality renders them less prone to degradation by endogenous proteases conferring enhanced half-lives and an increased potential as new drugs. However, given their general incapability to adopt the 3D structure of the parent peptides their application should be careful evaluated and investigated case by case. Here, we review the application of retro-inverso peptides in anticancer therapies, in immunology, in neurodegenerative diseases, and as antimicrobials, analyzing pros and cons of this interesting subclass of molecules.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1020
Author(s):  
Shujian Wu ◽  
Mouming Zhao ◽  
Shijue Gao ◽  
Yue Xu ◽  
Xiaoying Zhao ◽  
...  

This study evaluated the food safety and proximate composition of shrimp head (SH). Potentially toxic elements in SH were below European Union legislation limits. SH had a high content of tasting amino acids (sweet and umami amino acids was 57%) and a high content of functional amino acids (essential amino acids was 37%). Moreover, the changes of flavor and key umami molecules in SH were studied by sensory evaluation, electronic tongue, electronic nose, automated amino acid analyzer, and high performance liquid chromatography (HPLC). The results showed that the significant difference of flavor in SH happened during autolysis. SH with autolysis had the best umami taste at 6 h, which may result from the synergistic work of free amino acids and nucleotide related compounds. Additionally, the performance of endogenous proteases in SH was investigated to efficiently analyze autolysis. The optimum pH and temperature of endogenous proteases in SH were 7.5 and 50 °C, respectively. The autolysis of SH depends on two endogenous proteases (~50 kDa and ~75 kDa). These results suggest that the formation of flavor in SH during autolysis can be controlled, which could provide guidance for SH recycle. SH could consider as one of the food materials for producing condiments.


Author(s):  
Yeming Chen ◽  
Huina Li

Oleosins are mandatory to avoid coalescence of oil bodies (OBs), so commercial proteases are used to efficiently demulsify OBs into food oil. However, the commercial proteases and pH regulators (acid and alkali) greatly restrict this method in industry. In this study, aspartic endopeptidases, subtilisin-like proteases, metalloendopeptidase, and serine carboxypeptidases were identified in isolated sesame OBs by liquid chromatography tandem mass spectrometry (LC–MS/MS). Tricine–sodium dodecyl sulfate–polyacrylamide gel electrophoresis and protease inhibitor assay revealed that aspartic endopeptidases exerted high activity against oleosins in a pH range of 3−6 and a temperature range of 40−70 °C, while subtilisin-like proteases exhibited sharp optimum at pH 5. Metalloendopeptidase contributed to the low activity against oleosins at pH 7−9. Trichloroacetic acid–nitrogen soluble index and free amino acid analyses quantitatively revealed that the activity of serine carboxypeptidases was high at pH 3−5, and optimal at pH 4; the combined activity of aspartic endopeptidases and subtilisin-like proteases was optimal at pH 5. By incubating the isolated sesame OBs at pH 5 and 60 °C for 2 h, approximately 97% of total lipids were recovered as free oil. At last, LC−MS/MS analysis gave deep insight into the intrinsic proteins of sesame OBs: three kinds of oleosins with molecular weights around 17 kDa, and four kinds around 15 kDa; besides 27 kDa caleosin, four kinds of oil body-associated proteins and one kind of peroxygenase-like protein also around 27 kDa; in addition to 39 kDa steroleosin, 11-beta-hydroxysteroid dehydrogenase-like 6 also around 39 kDa.


2021 ◽  
Vol 22 (5) ◽  
pp. 2528
Author(s):  
Peter J. Jervis ◽  
Carolina Amorim ◽  
Teresa Pereira ◽  
José A. Martins ◽  
Paula M. T. Ferreira

Supramolecular peptide hydrogels are gaining increased attention, owing to their potential in a variety of biomedical applications. Their physical properties are similar to those of the extracellular matrix (ECM), which is key to their applications in the cell culture of specialized cells, tissue engineering, skin regeneration, and wound healing. The structure of these hydrogels usually consists of a di- or tripeptide capped on the N-terminus with a hydrophobic aromatic group, such as Fmoc or naphthalene. Although these peptide conjugates can offer advantages over other types of gelators such as cross-linked polymers, they usually possess the limitation of being particularly sensitive to proteolysis by endogenous proteases. One of the strategies reported that can overcome this barrier is to use a peptidomimetic strategy, in which natural amino acids are switched for non-proteinogenic analogues, such as D-amino acids, β-amino acids, or dehydroamino acids. Such peptides usually possess much greater resistance to enzymatic hydrolysis. Peptides containing dehydroamino acids, i.e., dehydropeptides, are particularly interesting, as the presence of the double bond also introduces a conformational restraint to the peptide backbone, resulting in (often predictable) changes to the secondary structure of the peptide. This review focuses on peptide hydrogels and related nanostructures, where α,β-didehydro-α-amino acids have been successfully incorporated into the structure of peptide hydrogelators, and the resulting properties are discussed in terms of their potential biomedical applications. Where appropriate, their properties are compared with those of the corresponding peptide hydrogelator composed of canonical amino acids. In a wider context, we consider the presence of dehydroamino acids in natural compounds and medicinally important compounds as well as their limitations, and we consider some of the synthetic strategies for obtaining dehydropeptides. Finally, we consider the future direction for this research area.


2020 ◽  
Author(s):  
Matiss Ozols ◽  
Alexander Eckersley ◽  
Christopher I. Platt ◽  
Callum S. McGuinness ◽  
Sarah A. Hibbert ◽  
...  

AbstractAge, disease, and exposure to environmental factors can induce tissue remodelling and alterations in protein structure and abundance. In the case of human skin, ultraviolet radiation (UVR)-induced photo-ageing has a profound effect on dermal extracellular matrix (ECM) proteins. We have previously shown that ECM proteins rich in UV-chromophore amino acids are differentially susceptible to UVR. However, this UVR-mediated mechanism alone does not explain the loss of UV-chromophore-poor assemblies such as collagen. Here, we aim to develop novel bioinformatics tools to predict the relative susceptibility of human skin proteins to not only UVR and photodynamically produced ROS but also to endogenous proteases. We test the validity of these protease cleavage site predictions against experimental datasets (both previously published and our own, derived by exposure of either purified ECM proteins or a complex cell-derived proteome, to matrix metalloproteinase [MMP]-9). Our deep Bidirectional Recurrent Neural Network (BRNN) models for cleavage site prediction in nine MMPs, four cathepsins, elastase-2, and granzyme-B perform better than existing models when validated against both simple and complex protein mixtures. We have combined our new BRNN protease cleavage prediction models with predictions of relative UVR/ROS susceptibility (based on amino acid composition) into the Manchester Proteome Susceptibility Calculator (MPSC) webapp http://www.manchesterproteome.manchester.ac.uk/#/MPSC (or http://130.88.96.141/#/MPSC). Application of the MPSC to the dermal proteome suggests that fibrillar collagens and elastic fibres will be preferentially degraded by proteases alone and by UVR/ROS and protease in combination, respectively. We also identify novel targets of oxidative damage and protease activity including dermatopontin (DPT), fibulins (EFEMP-1,-2, FBLN-1,-2,-5), defensins (DEFB1, DEFA3, DEFA1B, DEFB4B), proteases and protease inhibitors themselves (CTSA, CTSB, CTSZ, CTSD, TIMPs-1,-2,-3, SPINK6, CST6, PI3, SERPINF1, SERPINA-1,-3,-12). The MPSC webapp has the potential to identify novel protein biomarkers of tissue damage and to aid the characterisation of protease degradomics leading to improved identification of novel therapeutic targets.


2020 ◽  
Vol 39 (6) ◽  
pp. 1044-1049
Author(s):  
Bebek Serra OGUZ AHMET ◽  
Roda SESEOGULLARI-DIRIHAN ◽  
Arzu TEZVERGIL-MUTLUAY

2020 ◽  
Vol 13 (12) ◽  
pp. 421
Author(s):  
Agata Gitlin-Domagalska ◽  
Aleksandra Maciejewska ◽  
Dawid Dębowski

Bowman-Birk inhibitors (BBIs) are found primarily in seeds of legumes and in cereal grains. These canonical inhibitors share a highly conserved nine-amino acids binding loop motif CTP1SXPPXC (where P1 is the inhibitory active site, while X stands for various amino acids). They are natural controllers of plants’ endogenous proteases, but they are also inhibitors of exogenous proteases present in microbials and insects. They are considered as plants’ protective agents, as their elevated levels are observed during injury, presence of pathogens, or abiotic stress, i.a. Similar properties are observed for peptides isolated from amphibians’ skin containing 11-amino acids disulfide-bridged loop CWTP1SXPPXPC. They are classified as Bowman-Birk like trypsin inhibitors (BBLTIs). These inhibitors are resistant to proteolysis and not toxic, and they are reported to be beneficial in the treatment of various pathological states. In this review, we summarize up-to-date research results regarding BBIs’ and BBLTIs’ inhibitory activity, immunomodulatory and anti-inflammatory activity, antimicrobial and insecticidal strength, as well as chemopreventive properties.


Sign in / Sign up

Export Citation Format

Share Document