Fracture mechanics characterisation of crack growth under creep conditions

1988 ◽  
Vol 23 (2) ◽  
pp. 87-96 ◽  
Author(s):  
T Hollstein ◽  
R Kienzler

Creep crack growth rates in the 32%−Ni−20%−Cr alloy Incoloy 800 H at 800°C are correlated with the fracture mechanics parameter C∗ integral. This was done by experimental and numerical investigations of different specimen sizes and geometries under constant load, constant rate of crack opening displacement or crosshead displacement, or slow cyclic loading. In the numerical simulations plane and three-dimensional finite element calculations have been performed without consideration of creep crack growth.

Author(s):  
K. M. Tarnowski ◽  
C. M. Davies ◽  
G. A. Webster ◽  
D. W. Dean

Pre-compression of 316H stainless steel significantly alters its tensile, uniaxial creep and crack growth behaviour. It has previously been shown that reliable and conservative creep crack initiation predictions can generally be obtained for as-received 316H stainless steel using a variety of prediction methods. Given the changes in material behaviour caused by pre-compression, this paper applies similar prediction methods to pre-compressed 316H stainless steel at 550°C. Several procedures are available for estimating creep crack initiation time periods. The suitability of a procedure depends on the availability of the necessary material data. The procedures considered in this paper include the use of the creep fracture mechanics parameter C*, the crack opening displacement concept, the sigma-d approach and the time dependent failure assessment diagram. Creep crack growth tests have been performed on compact tension specimens manufactured from 316H stainless steel which was uniformly pre-compressed by 4% and 8% at room temperature. For each test, the time for creep crack initiation to occur was recorded. Predicted creep crack initiation times have been compared with the experimentally determined values. Comparisons with as-received material are also included. For pre-compressed material, conservative creep crack initiation predictions were only consistently achieved using steady state creep crack growth rates predicted from C*. This is a significant difference to as-received material for which conservative predictions were generally obtained by a variety of methods. At this time, there is only a limited set of pre-compressed data making it difficult to draw firm conclusions about the appropriateness of the various creep crack initiation prediction methods. The differences in the results between the pre-compressed and as-received material do however highlight the need for further tests on pre-compressed material.


Author(s):  
Magdalena Speicher ◽  
Thorben Bender ◽  
Andreas Klenk ◽  
Falk Mueller ◽  
Christian Kontermann ◽  
...  

Abstract Originating from defects and flaws in high temperature components crack initiation and crack propagation under service conditions can occur. Fracture mechanics data and procedures are needed to study crack problems and to support an advanced remnant life evaluation. During subsequent research in the past 35 years, data were determined for different high temperature materials. Methodologies and concepts taking into account the specific material behavior were developed in order to be able to describe crack initiation and crack growth and have appropriate assessment methods available. For creep crack initiation two criteria principles were used and for creep crack growth assessment based on the integral C* parameter were applied. Furthermore, a method for determination of critical crack length was developed allowing decisions whether modified stress analysis methods are sufficient or more complicated fracture mechanics methods are needed. To provide data and methodologies in a user-friendly way, a program system combining data and methods was implemented. The paper describes developed features and shows comparisons to other methods. The methods can be applied for design purposes as well as remnant life assessments.


Author(s):  
Tae-Young Ryu ◽  
Han-Beom Seo ◽  
Jong-Min Kim ◽  
Jae-Boong Choi ◽  
Young-Jin Kim ◽  
...  

For integrity assessment of structure containing crack, evaluation method based on fracture mechanics such as linear-elastic and elastic-plastic fracture mechanics has been relatively common method and becoming more widespread. However, it can be used only if the crack opening or tearing is occurred. If the crack exists on the piping components subjected to internal pressure, net-section stress is occurred in the direction on crack opening no matter where crack locate. On the contrary to this, if the external pressure is applied to piping components, net-section stress is occurred opposite direction and it is expected crack opening not to be occur. The subject of this study is SMART steam generator tube which is designed as helical geometrical feature and to be pressurized outside. Three dimensional finite element analyses are carried out to investigate crack behavior under external pressure considered various crack geometries and locations. Furthermore, the possibility of failure of SMART steam generator tube under design pressure is investigated.


Sign in / Sign up

Export Citation Format

Share Document