On the error analysis of residual stress measurements by the hole-drilling method

1993 ◽  
Vol 28 (4) ◽  
pp. 273-276 ◽  
Author(s):  
H Zhou ◽  
M D Rao

In this paper, an error analysis is carried out to discuss two important parameters that influence the accuracy in the measurement of residual stress by the hole-drilling technique. The first is the error associated with zero strain phenomenon that occurs for certain orientations of the strain gauges. A rigorous condition for zero strain point is given and measurement accuracy is discussed when the zero strain point phenomenon occurs. Secondly, the calculated residual stress field is affected by the methods chosen for the estimation and calibration of the relieved strain coefficients. The errors associated with the estimation of the relieved strain coefficients are also discussed along with their useful range for the calculation of the residual stress field.

2011 ◽  
Vol 317-319 ◽  
pp. 386-392
Author(s):  
Yin Fei Yang ◽  
Ning He ◽  
Liang Li

The unknown and uneven macro-residual stresses in blanks will cause deformation on large-scale component, especially in non-prestretched plates. Based on the retrieval of stress field by measuring stress changes due to the rebalance of stresses after machining, a new idea is proposed in this paper to predict and control the machining deformation of large-scale components. It consists of analysis of the machining deformation, retrieval of macro-residual stress field, and finally optimization of following cutting process. In the retrieval process, the stresses are measured with an improved hole-drilling method and the measured data are then interpolated to 3D stress field.


2013 ◽  
Vol 768-769 ◽  
pp. 449-455 ◽  
Author(s):  
Zoran Bergant ◽  
Janez Grum

The in-plane residual stresses in laser cladded specimens, made of 12-nickel precipitation hardening maraging hot-working tool steel 1.2799 (SIST EN 10027-2) are analyzed using the hole drilling method. The CO2 laser was used to deposit the alloy NiCoMo-1 with significantly higher content of nickel and cobalt with austenitic microstructure at room temperature. The Nd:YAG laser was used to deposit the maraging alloy designated NiCoMo-2, with similar chemical composition as the base material. The comparison of residual stress field showed the sign and the magnitude of residual stresses depends on the chemical composition of the clad being deposited. The high tensile residual stresses were found in NiCoMo-1 layers and favorable compressive residual stresses were found in NiCoMo-2 layers. The metallurgical aspects of residual stress generation are discussed.


Author(s):  
S. Heikebrügge ◽  
R. Ottermann ◽  
B. Breidenstein ◽  
M.C. Wurz ◽  
F. Dencker

Abstract Background Commonly, polymer foil-based strain gauges are used for the incremental hole drilling method to obtain residual stress depth profiles. These polymer foil-based strain gauges are prone to errors due to application by glue. For example zero depth setting is thus often erroneous due to necessary removal of polymer foil and glue. This is resulting in wrong use of the calibration coefficients and depth resolution and thus leading to wrong calculations of the obtained residual stress depth profiles. Additionally common polymer foil-based sensors are limited in their application regarding e.g. exposure to high temperatures. Objective This paper aims at a first step into the qualification of directly deposited thin film strain gauges for use with the incremental hole drilling method. With the directly deposited sensors, uncertainties regarding the determination of calibration coefficients and zero depth setting due to the absence of glue can be reduced to a minimum. Additionally, new areas of interest such as the investigation of thermally sprayed metallic layers can be addressed by the sensors due to their higher temperature resilience and their component inherent minimal thickness. Methods For the first time, different layouts of directly deposited thin film strain gauges for residual stress measurements were manufactured on a stainless steel specimen. Strain measurements during incremental hole drilling using a bespoke hole drilling device were conducted. Residual stress depth profiles were calculated using the Integral method of the ASTM E837 standard. Afterwards, strain measurements with conventional polymer foil-based strain gauges during incremental hole drilling were conducted and residual stress depth profiles were calculated accordingly. Finally the obtained profiles were compared regarding characteristic values. Results The residual stress depth profiles obtained from directly deposited strain gauges generally match the ones obtained from conventional polymer foil based strain gauges. With the novel strain gauges, zero depth setting is simplified due to the absence of glue and polymer foil. With the direct deposition, a wide variety of rosette designs is possible, enabling a more detailed evaluation of the strain field around the drilled hole. Conclusions The comparative analysis of the obtained residual stress depth profiles shows the general feasibility of directly deposited strain gauges for residual stress measurements. Detailed investigations on uncertainty sources are still necessary.


Sign in / Sign up

Export Citation Format

Share Document