Optimization of anvil design for ensuring dimensional precision of forged round billet without forging defects by three-dimensional rigid-plastic finite element analysis

Author(s):  
K Tamura ◽  
M Akiyama ◽  
J Tajima

Focusing upon finding an optimum anvil design of the spiral forging stage for manufacturing a round billet to good dimensional precision directly from an octagonal work-piece without forging defects, three-dimensional rigid-plastic finite element analyses have been carried out. By analysis and laboratory experiment, the mechanism through which overlapping defects are caused in spiral forging has been quantitatively clarified and a new parameter to predict overlapping defect generation proposed. By making use of the parameter, an anvil design of the entrance side has been proposed to prevent overlapping defects. Moreover, the whole geometry of the anvil has been optimized in order to ensure dimensional precision of the final round billet. As a result, a fundamental scheme to optimize anvil design for manufacturing a round billet directly from an octagonal workpiece has been established and the total number of passes was successfully reduced in the production line.

Author(s):  
Y. H. Tang ◽  
H. Yu ◽  
J. E. Gordon ◽  
M. Priante ◽  
D. Y. Jeong ◽  
...  

This paper describes analyses of a railroad tank car impacted at its side by a ram car with a rigid punch. This generalized collision, referred to as a shell impact, is examined using nonlinear (i.e., elastic-plastic) finite element analysis (FEA) and three-dimensional (3-D) collision dynamics modeling. Moreover, the analysis results are compared to full-scale test data to validate the models. Commercial software packages are used to carry out the nonlinear FEA (ABAQUS and LS-DYNA) and the 3-D collision dynamics analysis (ADAMS). Model results from the two finite element codes are compared to verify the analysis methodology. Results from static, nonlinear FEA are compared to closed-form solutions based on rigid-plastic collapse for additional verification of the analysis. Results from dynamic, nonlinear FEA are compared to data obtained from full-scale tests to validate the analysis. The collision dynamics model is calibrated using test data. While the nonlinear FEA requires high computational times, the collision dynamics model calculates gross behavior of the colliding cars in times that are several orders of magnitude less than the FEA models.


2008 ◽  
Vol 575-578 ◽  
pp. 255-260 ◽  
Author(s):  
Xi Dong Xing ◽  
Xue Dao Shu

Two-wedge Cross Wedge Rolling (TCWR) is a metal processing technology in which a heated cylindrical billet is plastically deformed into an axial part by the action of two wedges dies moving tangentially relative to the work piece. The metal deformation process is more complicated in TCWR than in single-wedge CWR. In this paper, a new and innovative numerical model of TCWR was developed, using advanced explicit dynamic finite element method (FEM). The whole TCWR process was simulated successfully, the three-dimensional nonlinear deformation process including stress and strain variation among the whole stages was analyzed at length, and 4 different principal stresses, including the first, second, third and von Mises equivalent stresses, at different billet centers are presented serving as a TCWR design guideline. Experimental result proves that the finite element simulation in TCWR process is true and this fundamental investigation provides a multi-wedge guideline in selecting CWR tool parameters and tool manufacturing.


1992 ◽  
Vol 114 (4) ◽  
pp. 459-464 ◽  
Author(s):  
Chinghua Hung ◽  
Shiro Kobayashi

Three-dimensional rigid-plastic finite element method was used to analyze the practice of open-die block forging, focusing on the effects of die configurations and forging pass designs. Four combinations of die configurations were investigated: conventional flat dies, top flat/bottom V-shaped dies, and double V-shaped dies with 120 and 135 deg included angles. Two different pass designs, 90 and 180 deg rotation angles between succeeding passes, were applied to each die set. The results include the magnitude and distribution of effective strains along the center line of the cylindrical workpiece and the final shape of the workpiece. Good agreement was observed in comparison with experimental data from physical modeling method, and several suggestions were made for choosing suitable dies.


Sign in / Sign up

Export Citation Format

Share Document