Analyses of Full-Scale Tank Car Shell Impact Tests

Author(s):  
Y. H. Tang ◽  
H. Yu ◽  
J. E. Gordon ◽  
M. Priante ◽  
D. Y. Jeong ◽  
...  

This paper describes analyses of a railroad tank car impacted at its side by a ram car with a rigid punch. This generalized collision, referred to as a shell impact, is examined using nonlinear (i.e., elastic-plastic) finite element analysis (FEA) and three-dimensional (3-D) collision dynamics modeling. Moreover, the analysis results are compared to full-scale test data to validate the models. Commercial software packages are used to carry out the nonlinear FEA (ABAQUS and LS-DYNA) and the 3-D collision dynamics analysis (ADAMS). Model results from the two finite element codes are compared to verify the analysis methodology. Results from static, nonlinear FEA are compared to closed-form solutions based on rigid-plastic collapse for additional verification of the analysis. Results from dynamic, nonlinear FEA are compared to data obtained from full-scale tests to validate the analysis. The collision dynamics model is calibrated using test data. While the nonlinear FEA requires high computational times, the collision dynamics model calculates gross behavior of the colliding cars in times that are several orders of magnitude less than the FEA models.

2015 ◽  
Vol 52 (12) ◽  
pp. 2041-2054 ◽  
Author(s):  
R. Kerry Rowe ◽  
K.-W. Liu

The performance of four sections of a full-scale embankment constructed on soft soil is examined using a fully coupled and fully three-dimensional finite element analysis. The four sections had similar embankment loadings but different improvement options (one unimproved, one with pile-support only, one with a single layer geotextile-reinforced platform and pile-support, and one with two layers of geogrid-reinforced platform and pile-support). Like the field data, the numerical results show that the inclusion of piles decreases the settlement at the subsoil surface to 52% of that for the unimproved section, and the addition of a single layer of geotextile reinforcement (J = 800 kN/m) further reduced settlement to only 31% of that of the unimproved section. The effects of geosynthetic reinforcement and multiple layers of reinforcement on the performance of the pile-supported embankment are discussed. The relative load transfer is calculated using eight existing methods and they are compared with the field measurements and numerical results.


2020 ◽  
Vol 10 (4) ◽  
pp. 1545
Author(s):  
Zongyuan Zhang ◽  
Hongyuan Fang ◽  
Bin Li ◽  
Fuming Wang

Concrete pipes are the most widely used municipal drainage pipes in China. When concrete pipes fall into years of disrepair, numerous problems appear. As one of the most common problems of concrete pipes, cracks impact on the deterioration of mechanical properties of pipes, which cannot be ignored. In the current work, normal concrete pipes and those with pre-existing cracks are tested on a full scale under an external compressive load. The effects of the length, depth, and location of cracks on the bearing capacity and mechanical properties of the concrete pipes are quantitatively analyzed. Based on the full-scale tests, three-dimensional finite element models of normal and cracked concrete pipes are developed, and the measured results are compared with the data of the finite element analysis. It is clear that the test measurements are in good agreement with the simulation results; the bearing capacity of a concrete pipe is inversely proportional to the length and depth of the crack, and the maximum circumferential strain of the pipe occurs at the location of the crack. The strain of the concrete pipe also reveals three stages of elasticity, plasticity, and failure as the external load rises. Finally, when the load series reaches the limit of the failure load of the concrete pipe with pre-existing cracks, the pipe breaks along the crack position.


Author(s):  
K Tamura ◽  
M Akiyama ◽  
J Tajima

Focusing upon finding an optimum anvil design of the spiral forging stage for manufacturing a round billet to good dimensional precision directly from an octagonal work-piece without forging defects, three-dimensional rigid-plastic finite element analyses have been carried out. By analysis and laboratory experiment, the mechanism through which overlapping defects are caused in spiral forging has been quantitatively clarified and a new parameter to predict overlapping defect generation proposed. By making use of the parameter, an anvil design of the entrance side has been proposed to prevent overlapping defects. Moreover, the whole geometry of the anvil has been optimized in order to ensure dimensional precision of the final round billet. As a result, a fundamental scheme to optimize anvil design for manufacturing a round billet directly from an octagonal workpiece has been established and the total number of passes was successfully reduced in the production line.


1992 ◽  
Vol 114 (4) ◽  
pp. 459-464 ◽  
Author(s):  
Chinghua Hung ◽  
Shiro Kobayashi

Three-dimensional rigid-plastic finite element method was used to analyze the practice of open-die block forging, focusing on the effects of die configurations and forging pass designs. Four combinations of die configurations were investigated: conventional flat dies, top flat/bottom V-shaped dies, and double V-shaped dies with 120 and 135 deg included angles. Two different pass designs, 90 and 180 deg rotation angles between succeeding passes, were applied to each die set. The results include the magnitude and distribution of effective strains along the center line of the cylindrical workpiece and the final shape of the workpiece. Good agreement was observed in comparison with experimental data from physical modeling method, and several suggestions were made for choosing suitable dies.


2021 ◽  
Vol 5 (3) ◽  
pp. 132
Author(s):  
Matthias Hinze ◽  
André Schmidt ◽  
Remco I. Leine

In this paper, we introduce a formulation of fractional constitutive equations for finite element analysis using the reformulated infinite state representation of fractional derivatives. Thereby, the fractional constitutive law is approximated by a high-dimensional set of ordinary differential and algebraic equations describing the relation of internal and external system states. The method is deduced for a three-dimensional linear viscoelastic continuum, for which the hydrostatic and deviatoric stress-strain relations are represented by a fractional Zener model. One- and two-dimensional finite elements are considered as benchmark problems with known closed form solutions in order to evaluate the performance of the scheme.


Joint Rail ◽  
2003 ◽  
Author(s):  
Karina Jacobson ◽  
David Tyrell ◽  
Benjamin Perlman

Two full-scale oblique grade-crossing impact tests were conducted in June 2002 to compare the crashworthiness performance of alternative corner post designs on rail passenger cab cars. On June 4, 2002 a cab car fitted with an end structure built to pre-1999 requirements impacted a steel coil at approximately 14 mph. Following, on June 7, 2002 a cab car fitted with an end structure built to current requirements underwent the same test. Each car was equipped with strain gauges, string potentiometers and accelerometers to measure the deformation of specific structural elements, and the longitudinal, lateral and vertical displacements of the car body. The gross motions of the cars and steel coil, the force/crush behavior of the end structures, and the deformation of major elements in the end structures were measured during the tests. During the first test, the car fitted with the 1990’s design end structure acquired more than 20 inches of longitudinal deformation causing failure at the corner post and resulting in the loss of operator survival space. During the second test, the corner post on the car fitted with the State-of-the-Art design deformed longitudinally by about 8 inches, causing no failure and consequently preserving the survivable operator volume. In both cases, the steel coil was thrown to the side of the train after impacting the end structure. Prior to the tests, the crush behaviors of the cars and their dynamic responses were simulated with car crush and collision dynamics models. The car crush model was used to determine the force/crush characteristics of the corner posts, as well as their modes of deformation. The collision dynamics model was used to predict the extent of crush of the corner posts as functions of impact velocity, as well as the three-dimensional accelerations, velocities, and displacements of the cars and coil. Both models were used in determining the instrumentation and its locations. This paper describes the collision dynamics model and compares predictions for the gross motions of the cars and coils made with this model with measurements from the tests. A companion paper describes the car crush model and compares predictions made of car crush with measurements from the test. The collision dynamics was analyzed using a lumped-parameter model, with non-linear stiffness characteristics. The suspension of the car is included in the model in sufficient detail to predict derailment. The model takes the force/crush characteristic developed in the car crush analysis as input, and includes the lateral force that develops as the corner post is loaded longitudinally. The results from the full-scale grade-crossing impact tests largely agree with and confirm the preliminary results of the three-dimensional lumped parameter computer model of the collision dynamics. The predictions of the model for the three-dimensional accelerations, velocities, and displacements of the car and the coil are in very close agreement with the measurements made in the tests of both cars, up to the time of failure of the corner post. The cars remained on the track in both tests, as predicted with the model.


Sign in / Sign up

Export Citation Format

Share Document