principal stresses
Recently Published Documents


TOTAL DOCUMENTS

617
(FIVE YEARS 161)

H-INDEX

36
(FIVE YEARS 3)

2022 ◽  
Vol 10 (1) ◽  
pp. 12
Author(s):  
João Paulo Mendes Tribst ◽  
Dayana Campanelli de Morais ◽  
Jefferson David Melo de Matos ◽  
Guilherme da Rocha Scalzer Lopes ◽  
Amanda Maria de Oliveira Dal Piva ◽  
...  

This study evaluated the influence of distal implants angulation and framework material in the stress concentration of an All-on-4 full-arch prosthesis. A full-arch implant-supported prosthesis 3D model was created with different distal implant angulations and cantilever arms (30° with 10-millimeter cantilever; 45° with 10-millimeter cantilever and 45° with 6-millimeter cantilever) and framework materials (Cobalt–chrome [CoCr alloy], Yttria-stabilized tetragonal zirconia polycrystal [Y-TZP] and polyetheretherketone [PEEK]). Each solid was imported to computer-aided engineering software, and tetrahedral elements formed the mesh. Material properties were assigned to each solid with isotropic and homogeneous behavior. The contacts were considered bonded. A vertical load of 200 N was applied in the distal region of the cantilever arm, and stress was evaluated in Von Misses (σVM) for prosthesis components and the Maximum (σMAX) and Minimum (σMIN) Principal Stresses for the bone. Distal implants angled in 45° with a 10-millimeter cantilever arm showed the highest stress concentration for all structures with higher stress magnitudes when the PEEK framework was considered. However, distal implants angled in 45° with a 6-millimeter cantilever arm showed promising mechanical responses with the lowest stress peaks. For the All-on-4 concept, a 45° distal implants angulation is only beneficial if it is possible to reduce the cantilever’s length; otherwise, the use of 30° should be considered. Comparing with PEEK, the YTZP and CoCr concentrated stress in the framework structure, reducing the stress in the prosthetic screw.


2022 ◽  
Vol 10 (1) ◽  
pp. 25-34 ◽  
Author(s):  
L.B. Tsvik ◽  
E.V. Zenkov

A study of the stress-strain state (SSS) of disc specimens has been conducted when testing specimens with stress concentrators (grooves). The research has shown that the truncation of circular discs along two symmetrical chords makes it possible to change the type (the ratio of principal stresses) of SSS that occurs at the destruction site. Therefore, these specimens can be used to assess the structural strength of materials on standard single-drive testing machines, taking into account the real type of SSS that occurs in the bearing elements of machines. The results of numerical SSS modeling have been used to build the dependences of the SSS type and level on geometric parameters of specimens. Geometrical parameters can be chosen for a certain SSS type to assess both the static and fatigue strengths of materials used in the manufacture of bearing elements.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kelsey Crane ◽  
Allison Bohanon

Thrust fault-related landforms, smooth plains units, and impact craters and basins have all been observed on the surface of Mercury. While tectonic landforms point to a long-lived history of global cooling and contraction, smooth plains units have been inferred to represent more punctuated periods of effusive volcanism. The timings of these processes are inferred through impact cratering records to have overlapped, yet the stress regimes implied by the processes are contradictory. Effusive volcanism on Mercury is believed to have produced flood basalts through dikes, the propagation of which is dependent on being able to open and fill vertical tensile cracks when horizontal stresses are small. On the contrary, thrust faults propagate when at least one horizontal stress is very large relative to the vertical compressive stress. We made sense of conflicting stress regimes through modeling with frictional faulting theory and Earth analogue work. Frictional faulting theory equations predict that the minimum and maximum principal stresses have a predictable relationship when thrust faulting is observed. The Griffith Criterion and Kirsch equations similarly predict a relationship between these stresses when tensile fractures are observed. Together, both sets of equations limit the range of stresses possible when dikes and thrusts are observed and permitted us to calculate deviatoric stresses for regions of Earth and Mercury. Deviatoric stress was applied to test a physical model for dike propagation distance in the horizontally compressive stress regime of the Columbia River Flood Basalt Province, an Earth analogue for Borealis Planitia, the northern smooth plains, of Mercury. By confirming that dike propagation distances from sources observed in the province can be generated with the physical model, we confidently apply the model to confirm that dikes on Mercury can propagate in a horizontally compressive stress regime and calculate the depth to the source for the plains materials. Results imply that dikes could travel from ∼89 km depth to bring material from deep within the lithosphere to the surface, and that Mercury’s lithosphere is mechanically layered, with only the uppermost layer being weak.


2021 ◽  
Author(s):  
Rajesh Goteti ◽  
Yaser Alzayer ◽  
Hyoungsu Baek ◽  
Yanhui Han

Abstract In this paper, we present results from the first-ever 3D geomechanical model that supports pre-drill prediction of regional in-situ stresses throughout the Arabian Plate. The results can be used in various applications in the petroleum industry such as fault slip-tendency analysis, hydraulic fracture stimulation design, wellbore stability analysis and underground carbon storage. The Arabian tectonic plate originated by rifting of NE Africa to form the Red Sea and the Gulfs of Aden and Aqaba. The continental rifting was followed by the formation of collisional zones with eastern Turkey, Eurasia and the Indo-Australian Plate, which resulted in the formation of the Eastern Anatolian fault system, the fold-thrust belts of Zagros and Makran, and the Owen fracture zone. This present-day plate tectonic framework, and the ongoing movement of the Arabian continental lithosphere, exert a first-order control on the of in-situ stresses within its sedimentary basins. Using data from published studies, we developed a 3D finite element of the Arabian lithospheric plate that takes into account interaction between the complex 3D plate geometry and present-day plate boundary velocities, on elastic stress accumulation in the Arabian crust. The model geometry captures the first-order topographic features of the Arabian plate such as the Arabian shield, the Zagros Mountains and sedimentary thickness variations throughout the tectonic plate. The model results provide useful insights into the variations in in-situ stresses in sediments and crystalline basement throughout Arabia. The interaction between forces from different plate boundaries results in a complex transitional stress state (thrust/strike-slip or normal/strike-slip) in the interior regions of the plate such that the regional tectonic stress regime at any point may not be reconciled directly with the anticipated Andersonian stress regimes at the closest plate boundary. In the sedimentary basin east of the Arabian shield, the azimuths of the maximum principal compressive stresses change from ENE in southeast to ~N-S in northern portions of the plate. The shape of the plate boundary, particularly along the collisional boundaries, plays a prominent in controlling both the magnitude and orientations of the principal stresses. In addition, the geometry of the Arabian shield in western KSA and variations in the sedimentary basin thickness, cause significant local stress perturbations over 10 – 100 km length scales in different regions of the plate. The model results can provide quantitative constraints on relative magnitudes of principal stresses and horizontal stress anisotropy, both of which are critical inputs for various subsurface applications such as mechanical earth model (MEM) and subsequently wellbore stability analysis (WSA). The calibrated model results can potentially reduce uncertainties in input stress parameters for MEM and WSA and offer improvements over traditional in-situ stress estimation techniques.


2021 ◽  
Author(s):  
Salim Benmamar ◽  
Saif Al Arfi AL Arfi ◽  
Satya Perumalla ◽  
Gamal Salem ◽  
Agung Baruno ◽  
...  

Abstract ADNOC (Abu Dhabi National Oil Company) recently drilled some wells in Onshore Abu Dhabi (Field-A) and encountered consistent hole instability from Umm Er Radhuma (UER) to Simsima. Thus, a GeoMechanical review was proposed to investigate the root causes, if any, and recommend possible remedies for the upcoming drilling campaign. While detailed drilling event analysis allowed to investigate the correlation between the mud weight program and well trajectory, borehole image log analysis and geological understanding from nearby fields indicated the possible role of structural and lithological features on hole instability. Integration of drilling engineering data and regional geological knowledge helped to narrow down the possible causes of drilling challenges. Sedimentalogical review of Image logs have established some correlation between rock types and hole instability events. Drilling experience shows there is very narrow margin for loss and/or gain to occur. There is regional geological evidence of the presence of a wide range of vuggy structures, as well as natural fractures and/or faults. These features tend to make Simsima formation heterogeneous in terms of permeability and more prone to losses. Since most fractures are parallel to SHmax direction and well was drilled towards Shmin direction, there are greater chances of encountering faults and/or fractures, which would be critically-stressed and lead to loss and/or gain situations. Geomechanical parameters helped highlight the magnitudes and orientations of principal stresses. Observations of several tight hole and stuck pipe events while tripping from Radhuma and UERB shale to Simsima seem to indicate mud weight used was insufficient. Role of multiple failure mechanisms was identified, and relevant solutions were recommended as well as implemented to achieve the drilling success. The case study presented here emphasizes how different carbonate textures and the presence and orientation of natural fractures and/or faults within Simsima formation can impact hole instability with respect to wellbore trajectory. Proactive implementation of recommendations from this analysis on well planning and fluid design resulted in improvement of drilling performance and reduction of non-productive time in new wells.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Özge Özdal Zincir ◽  
Ateş Parlar

Abstract Background The All-on-four dental implant method is an implantology method designed to provide a comfortable prosthetic treatment option by avoiding advanced surgical procedures. This research aims to compare and evaluate the stress and tension values in conventional angled multiunit abutment-implant connection systems and monoblock dental implants used in the all-on-four procedure with finite element analysis. Methods Two master models were created by placing four implants connected to multiunit abutments (group A) in the interforaminal region of a completely edentulous mandible and four monoblock implants (group B) in the same region of another completely edentulous mandible. Group A implants were classified according to their diameter as follows: 3.5 mm (M1A), 4.0 mm (M2A), and 4.5 mm (M3A). Similarly, group B implants were classified as M1B, M2B, and M3B. In the six models rehabilitated with acrylic fixed prostheses, a 100 N force was applied to the anterior implant region, and a 250 N force was applied to the posterior cantilever in both axial and 30° oblique directions. Von Mises stresses were analyzed in the bone and implant regions of all models. Results M1A and M1B, M2A and M2B, and M3A and M3B were compared with each other under axial and oblique forces. The maximum Von Mises stresses in the bone around implants and the prosthesis screws, and the maximum and minimum principal stresses in the cortical and trabecular bone in group A models were significantly higher than those in group B models. Conclusions In monoblock implant systems under axial and oblique forces, higher stress is accumulated in the bone, prosthesis screw and implant compared to multiunit abutment-implant connection systems.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Yuekun Xing ◽  
Bingxiang Huang ◽  
Binghong Li ◽  
Jiangfeng Liu ◽  
Qingwang Cai ◽  
...  

Abstract Directional fracturing is fundamental to weakening the hard roof in the mine. However, due to the significant stress disturbance in the mine, principal stresses present complicated and unmeasurable. Consequently, the designed hydraulic fracture (HF) extension path is always oblique to principal stresses. Then, the HF will present deflecting propagation, which will restrict the weakness of the hard roof. In this work, we proposed an approach to drive the HF to propagate directionally in the hard roof, utilizing a set of hydraulic fractures and their stress disturbance. In this approach, directional fracturing in the hard roof is conducted via the sequential fracturing of three linear distribution slots. The disturbed stresses produced by the first fracturing (in the middle) are utilized to restrict the HF deflecting extension of the subsequent fracturing. Then, the combined hydraulic fractures constitute a roughly directional fracturing trajectory in rock, i.e., the directional fracturing. To validate the directional fracturing approach, the cohesive crack (representing rock fracture process zone (FPZ)) model coupled with the extended finite element method (XFEM) was employed to simulate the 2D hydraulic fracturing process. The benchmark of the above fracturing simulation method was firstly conducted, which presents the high consistency between simulation results and the fracturing experiments. Then, the published geological data of the hard roof in Datong coal mine (in Shanxi, China) was employed in the fracturing simulation model, with various principal stress differences (2~6 MPa) and designed fracturing directions (30°~60°). The simulation results show that the disturbing stress of the first fracturing significantly inhibits the deflecting propagation of the subsequent fractures. More specifically, along the direction parallel to the initial minimum principal stress, the extension distance of the subsequent hydraulic fractures is 2~3 times higher than that of the deflecting HF in the first fracturing. The fracturing trajectory of the proposed direction fracturing method deviates from the designed fracturing path by only 2°~14°, reduced by 76%~93% compared with the traditional fracturing method utilizing a single hydraulic fracture. This newly proposed method can enhance the HF directional propagation ability more effectively and conveniently in the complex and unmeasurable stress field. Besides, this directional fracturing method can also provide references for the directional fracturing in the oil-gas and geothermal reservoir.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yulong Lu ◽  
Xingqiang Li ◽  
Yang Liu ◽  
Jiahao Leng

The Baoginshan quartz vein type gold mine in the Baimashan-Longshan-Ziyunshan gold belt is the object of study, and the nature of the fracture structure and its ore-controlling effect are studied through surface and pit investigation, and the nature of the ore-controlling structure system and combination pattern of the Baoginshan gold mine is established. The F7 and F9 fractures in the near-east-west (EW) direction are the main fractures, which tend to the north and control the spreading of the ore zone; the northwest (NW) direction secondary tension fracture, with a dominant yield of 221°∠63°, is a T-type fracture in the Riedel shear mode and is the ore-holding structure of the vein-like ore body; the northeast-east (NEE) direction secondary shear fracture, with a dominant yield of 343°∠53°, is a P-type fracture and the combination of the two controls the specific positioning of the ore body. The characteristics and nature of the fracture structures in the whole ore zone, as well as their combination patterns, indicate that the overall ore-controlling fracture system of Baoginshan is a right-going tensional shear fracture zone composed of NW-oriented (T-type) and NEE-oriented (P-type) secondary fractures with F7 and F9 fractures as boundary fractures. The directions of the principal stresses are σ1≈158°∠40°, σ2≈288°∠38°, and σ3≈42°∠28°, respectively. In the next step of the prospecting process, based on increasing the spacing of prospecting pits (to 40m), in-pit drilling is deployed in the upper and lower discs of the NEE secondary fracture along with the tendency and strike for literacy, which can significantly improve the efficiency and effectiveness of prospecting and greatly reduce the cost of prospecting.


Sign in / Sign up

Export Citation Format

Share Document