Flow regime discrimination technique for gas—liquid two-phase flow in magnetic fluid

Author(s):  
T Kuwahara ◽  
H Yamaguchi ◽  
F De Vuyst

This paper describes a new discrimination technique of flow regime (flow pattern) for gas—liquid two-phase flow in magnetic fluid. The proposed technique can identify the flow regime with simple devices by exploiting the wave patterns of signals obtained by electromagnetic induction. This utilization achieves a mechanically non-contact measuring method for objective fluids. In this study, verification experiments for practical measurement were conducted in upward gas—liquid two-phase flow. The results of the experiments have verified that the proposed measuring technique is useful as a method for flow regime discrimination.

2003 ◽  
Vol 125 (3) ◽  
pp. 479-485 ◽  
Author(s):  
S. Shuchi ◽  
H. Yamaguchi ◽  
M. Takemura

A new technique of measuring void fraction in magnetic fluid using electromagnetic induction was proposed. In order to establish the measuring method, a feasibility study was conducted experimentally with an aid of numerical analysis. From the results of static experiment and numerical analysis, it was obtained that there exists a linear relationship between the void fraction and the measured electromotive force, when induction coils were connected in series for Helmholtz excitation coils, regardless of distribution of air bubbles in magnetic fluid. By applying the calibrated linear relationship to actual two-phase situations, it was revealed that the proposed method yielded quite reasonable account for measuring the void fraction, showing excellent agreement with the mechanical measured data in the two-phase flow apparatus, and with the published correlation of the drift flux model. From the results of the present investigation, it was proved that the proposed technique is feasible for the actual measurement of void fraction in two-phase flow of magnetic fluid.


2008 ◽  
Vol 20 (20) ◽  
pp. 204141 ◽  
Author(s):  
T Kuwahara ◽  
F De Vuyst ◽  
H Yamaguchi

2021 ◽  
Author(s):  
Faraj Ben Rajeb ◽  
Syed Imtiaz ◽  
Yan Zhang ◽  
Amer Aborig ◽  
Mohamed M. Awad ◽  
...  

Abstract Slug flow is one of the most common flow patterns in non-Newtonian two-phase flow in pipes. It is a very common occurrence in gas-liquid two-phase flow in the pipe. Usually, it is an unfavorable flow pattern due to its unsteady nature, intermittency as well as high pressure drop. The differences between slug flow and elongated bubble flow are not clear because usually these two types of flow combined under one flow category. In general, these two-phase flow regimes are commonly defined as intermittent flow. In the present study, pressure gradient, and wave behavior in slug flow have been investigated depending on experimental work. In addition, void fraction has been estimated regarding available superficial liquid and gas velocities. The experimental records of superficial velocities of gas and liquid for slug flow and other flow patterns is used to create flow regime map for the gas non-Newtonian flow system. The effect of investigated flow regime velocities for non-Newtonian/gas flow on pressure drop and void fraction is reported. Pressure drop has been discovered to be reduced in slug flow more than other flow patterns due to high shear thinning behavior.


1994 ◽  
Vol 59 (12) ◽  
pp. 2595-2603
Author(s):  
Lothar Ebner ◽  
Marie Fialová

Two regions of instabilities in horizontal two-phase flow were detected. The first was found in the transition from slug to annular flow, the second between stratified and slug flow. The existence of oscillations between the slug and annular flows can explain the differences in the limitation of the slug flow in flow regime maps proposed by different authors. Coexistence of these two regimes is similar to bistable behaviour of some differential equation solutions.


1992 ◽  
Vol 114 (1) ◽  
pp. 14-30 ◽  
Author(s):  
E. F. Caetano ◽  
O. Shoham ◽  
J. P. Brill

Mechanistic models have been developed for each of the existing two-phase flow patterns in an annulus, namely bubble flow, dispersed bubble flow, slug flow, and annular flow. These models are based on two-phase flow physical phenomena and incorporate annulus characteristics such as casing and tubing diameters and degree of eccentricity. The models also apply the new predictive means for friction factor and Taylor bubble rise velocity presented in Part I. Given a set of flow conditions, the existing flow pattern in the system can be predicted. The developed models are applied next for predicting the flow behavior, including the average volumetric liquid holdup and the average total pressure gradient for the existing flow pattern. In general, good agreement was observed between the experimental data and model predictions.


Sign in / Sign up

Export Citation Format

Share Document