Behavioural modelling and analysis of hybrid vehicle steering systems

Author(s):  
V D Mills ◽  
J R Wagner

Hybrid vehicles integrate an internal combustion engine, electric motor with accompanying battery pack and generator, and potentially fuel cells to realize greater fuel economy and reduced emission levels. A variety of powertrain operating scenarios exist including engine with belt-driven generator, electric motor using battery pack and/or fuel cell and, finally, engine and electric motor. Automotive subsystems such as hydraulic power steering cannot be consistently powered by a conventional belt-driven hydraulic pump since the engine may be frequently turned off to conserve energy. Thus, a need exists to investigate the dynamic behaviour of various steering systems for hybrid vehicles in terms of platform steering characteristics and power consumption. In this paper, empirical and analytical mathematical models will be presented for power (e.g. hydraulic, electric and steer by wire) rack and pinion steering units. The influence of chassis, tyre-road interface and steering system non-linearities are introduced. Representative numerical results will be presented and discussed to investigate a vehicle's transient response for each steering system configuration.

2001 ◽  
Author(s):  
Val D. Mills ◽  
John R. Wagner ◽  
Darren M. Dawson

Abstract Hybrid vehicles integrate an internal combustion engine, electric motor with accompanying battery pack and generator, and potentially fuel cells to realize greater fuel economy and reduced emission levels. An attractive advantage of multiple energy sources is the increased travel range, reduced stationary recharging times, and availability of greater power for acceleration and payloads. A variety of operating scenarios exist for hybrid vehicle powertrains including engine (and belt driven generator), electric motor using battery back and/or fuel cell, and finally, engine and electric motor. Therefore, automotive subsystems such as hydraulic power steering cannot be consistently powered by a conventional belt driven hydraulic pump since the engine may be frequently turned-off to conserve energy. A need exists to investigate the dynamic behavior of various steering systems for hybrid vehicles in terms of platform steering characteristics, power consumption, and identification of performance requirements for a servo-motor steering system. In this paper, empirical and analytical mathematical models will be presented for power (e.g., hydraulic, electric, and steer-by-wire) rack and pinion steering units. The influence of vehicle and steering system nonlinearities will be introduced for greater accuracy in predicting the vehicle’s transient response. Representative results will be presented and discussed to investigate the response of the vehicle to different driver inputs as the steering system configurations are adjusted. An analysis of the numerical results will ultimately allow the prediction of vehicle trajectory, feedback torque, and power consumption during the driving maneuvers.


Author(s):  
Manel Allous ◽  
Kais Mrabet ◽  
Nadia Zanzouri

Electric power steering is an advanced steering system that uses an electric motor to improve steering comfort of the car. As a result, the failures in the electric motor can lead to additional fault modes and cause damage of the electric power steering system performance. Hence, to ensure the stability of this latter, the present paper proposes a new method to reconfigure the fault control. A novelty approach of fast fault estimation based on adaptive observer is also proposed. Moreover, to guarantee optimal and fast control, a fault-tolerant control based on inverse bond graph modeling is designed to construct the behavior of the nominal system. The simulation and the experimental results on a real electric power steering system reveal the importance of the control strategy and show that the proposed approach works as intended.


2010 ◽  
Vol 152-153 ◽  
pp. 1088-1091
Author(s):  
Lei Chen ◽  
Pan Zhang

On of the practical difficulties of high speed automotive hydraulic power steering is that the output exceeds the actual demands of the system, i.e., there is a substantial power loss. This paper discusses the configuration and the action principle of a new variable displacement of double-action vane pump, which consists of floating blocks. The pump belongs to an automotive hydraulic power steering system, and prosperous utilization is expected. In the meantime the mathematical and simulation model for hydraulic power steering of automobile were established and the Matlab Simulink simulation model was presented. Different parameters of pump are selected in simulating programming. The simulating results are analyzed and compared.


2014 ◽  
Vol 644-650 ◽  
pp. 755-758
Author(s):  
Jie Li ◽  
Jian Tong Song ◽  
Li Hong Wang ◽  
Jv Biao Yao

Conventional hydraulic steering system has the problems of "low-speed heavy, high-speed flight" and energy-wasting when steering, the main reason is after the system is designed, the power characteristics are fixed. To solve this problem it is necessary to achieve the power characteristics of changing power steering system according to speed of vehicles, in order to offer the power that matches the speed. Using vehicle speed sensor signal to control pilot solenoid unloading valve to regulate the pressure of hydraulic system, can achieve the regulation of power characteristics, this article is based on such idea to design variable hydraulic power steering system for hydraulic power steering system of light trucks.


2011 ◽  
Vol 80-81 ◽  
pp. 616-620
Author(s):  
Lei Chen ◽  
Pan Zhang ◽  
Hai Yan Wang ◽  
Ji An

This paper discusses the configuration and the action principle of a new variable displacement of double-action vane pump, which consists of floating blocks. The floating blocks that may move up and down in accordance with the rotational speed of the pump. The pump belongs to an automotive hydraulic power steering system, and prosperous utilization is expected. The theoretical flow model of the new pump was established and the pump flow changes under different speed were compared.


Sign in / Sign up

Export Citation Format

Share Document