pump unit
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 101)

H-INDEX

16
(FIVE YEARS 4)

2022 ◽  
Vol 10 (1) ◽  
pp. 103
Author(s):  
Xijie Song ◽  
Chao Liu ◽  
Zhengwei Wang

The vortex in a pump sump is a negative problem for the pump unit, which can lead to the decline of pump performance. Focusing on the internal pressure characteristics of the floor-attached vortex (FAV) and its influence on the pump unit, the FAV was analyzed adopting the previously verified numerical simulation method and experiment. The results show that the pressure in the vortex core gradually decreases with time, drops to a negative pressure at the development stage, and then reaches the lowest pressure during the continuance stage. When the negative pressure of the vortex tube is around the vaporization pressure of the continuance stage, it can cause a local cavitation at the impeller inlet. The evolution of the FAV is accompanied by a change of pressure gradient in the vortex core which is discussed in detail. This research provides theoretical guidance for a better understanding of the vortex characteristics and the optimal design for the pump.


Author(s):  
S. G. Zubairov ◽  
◽  
R. R. Yakhin ◽  
A. N Zotov ◽  
T. I. Salikhov ◽  
...  

The article describes a way to combat fatigue effects in the details of connecting modules of an electric driven centrifugal pump unit for oil production. A constructive solution for implementing the method in relation to complex downhole conditions in the form of a multifunctional damper using a differential piston to transfer it from the transport position when lowering into the well into the working one is shown. For a full-size damper, experimental studies of its vibration- isolating characteristics have been carried out when used in the form of substrates for supporting arms of elastomers of various densities and compositions. The preferred characteristics of elastomers and their ranking for various frequencies of forced vibrations are determined. Keywords: module, connection parts; electrically driven centrifugal pump unit; electrocentrifugal pumping unit; differential piston; damper; sbstrate; vibration velocity.


2021 ◽  
Vol 5 (4) ◽  
pp. 198-207
Author(s):  
E. B. Korotkov ◽  
O. V. Shirobokov ◽  
S. A. Matveev ◽  
Z. A. Yudina

The paper reports a brief description of spacecraft operating conditions, the main reasons of heating and thermal gradient appearance and need to reassign the thermal energy. Active thermal control systems and their advantages are considered, spacecraft for which the use of this type of thermal control systems is a priority. The electric pumping unit is pointed as a key unit of active thermal control systems. The electric pump unit is considered from the as the electromechanical system, its key elements are pointed. A description of the preferred pump types is reported and the types of active thermal control systems are briefly discussed. The foreign and domestic operating experience of spacecraft electric pumping units, the features of their designs are considered, the most common types of key elements are determined. Based on the results of the review, it is concluded that the most relevant layout of the electric pump unit is a centrifugal electrical pump with a brushless DC motor and hydrodynamic bearings. It is also indicated that the electric pump unit is a product with a long lifetime, which complicates the task of monitoring the technical condition in order to prevent failure.


2021 ◽  
Vol 5 (4) ◽  
pp. 217-226
Author(s):  
Yu. A. Zhukov ◽  
E. B. Korotkov ◽  
S. A. Matveev ◽  
N. S. Slobodzyan ◽  
O. V. Shirobokov

The work is devoted to the protection of a spacecraft from the influence of unacceptable internal vibration sources. The urgency of reducing the vibration activity on board the spacecraft to improve the accuracy of the target equipment is indicated. A particular problem of vibration protection of the spacecraft platform from a vibration source – an electric pump unit of a liquid thermal control system – is being solved. The basic requirements for electric pump unit vibration protection have been determined. Possible ways to reduce the level of vibration excited by the electric pump unit on the surface of the spacecraft fixation are considered. Particular attention is paid to such vibration protection methods as damping and vibration isolation, implemented by installing special vibration protection devices between the source (electric pump unit) and the object (spacecraft) – vibration isolators and vibration dampers. The principles of operation of vibration dampers and vibration isolators, the most common materials for vibration dampers are described. Examples of constructive solutions for linear single-axial vibration isolators are considered, recommendations for the use of promising products are developed. Particularemphasis is placed on the use of metal rubber as a material for vibration isolators. With regard to a specific design of electric pump unit, a diagram of the spatial structure of vibration isolation is proposed. Formulas for calculation are given in detail, a mathematical model of the vibration isolation system is developed. The procedure for calculating the parameters of the system has been formed. Based on the model, the maximum possible level of vibration suppression in the mid-frequency region was determined. Minimum required number of operable pixels was identified for monitoring the water surface with sufficient accuracy and reliability.


2021 ◽  
Vol 12 (1) ◽  
pp. 64
Author(s):  
Dmitriy Shishlyannikov ◽  
Valeriy Zverev ◽  
Anna Ivanchenko ◽  
Ivan Zvonarev

The main principles of hydroabrasive wear of parts of the pumping stages of well’s electric submersible pumps are considered in this article. The concentration, grain-size distribution and shape of solid particles have the greatest impact on the abrasion ability of particles of mechanical impurities interacting with the parts of pumping equipment. The implementation of filters is the most effective and affordable way to protect borehole electric submersible pumps from hydroabrasive wear. Filters reduce the concentration and decrease the average grain-size of mechanical impurities going through the pumping stages. The authors propose variants of constructive and schematic solutions of self-cleaning slot filters, providing an increase in the operating time of electric centrifugal pump units during production of well fluid with a high content of mechanical impurities. The operating principle of the proposed filters is described. The results of calculations of deformation of tubing string during the increase in pressure at the oil wellhead are presented, confirming the possibility of restoring the permeability of spring filter elements without lifting the pump unit to the surface.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaohui Duan ◽  
Fangpin Tang ◽  
Hao Xu ◽  
Jian Chen ◽  
Qun Lu ◽  
...  

The hydraulic excitation characteristics of axial flow pump unit are studied through theoretical analysis, numerical simulation and field test in this paper. The correlation between impeller hydraulic and radial vibration displacement of impeller centroid is obtained through theoretical analysis. Through the 1-way fluid-solid-interaction (FSI) numerical simulation, the distributions of water pressure and displacement on the impeller surface are obtained, and the time-domain and frequency-domain characteristics of transient hydraulic and radial displacement are revealed. Through the field test, the external characteristics of axial flow pump unit and the time-frequency characteristics of the pressure pulsation at the measuring points beside the inlet of the impeller are obtained. The comparisons between simulation results and experimental results show that the former is accurate and reliable.


InterConf ◽  
2021 ◽  
pp. 190-196
Author(s):  
Ivan Biliuk ◽  
Leonid Buhrim ◽  
Serhii Havrylov ◽  
Oleh Savchenko ◽  
Guodong Shen

in presented paper the transient characteristics of an asynchronous electric drive of a pump unit with PID-similar fuzzy controller are investigated. A comparative analysis of control quality in a system with traditional and fuzzy controllers is performed. The use of fuzzy controller in the asynchronous electric drive of the pump unit for water supply system is substantiated and it is proved that the use of fuzzy logic leads to the improvement of the quality of the transient process of the system. The simulation was performed using the Scilab mathematical application package.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2679
Author(s):  
Victor Goman ◽  
Vladimir Prakht ◽  
Vadim Kazakbaev ◽  
Vladimir Dmitrievskii

This study carried out a comparative analysis of indicators of electricity consumption and CO2 emissions for four-pole induction motors (IMs) of efficiency classes IE3 and IE4 with a rated power of 2.2–200 kW in a variable speed pump unit. In addition, innovative IE4 converter-fed synchronous reluctance motors (SynRMs) were evaluated. The comparison was derived from the manufacturer’s specifications for the power drive systems (PDSs) at various rotational speeds and loads. The results showed that the emission indicators for IE3 class motors were significantly worse compared with IE4 class motors for low power ratings, which make up the vast majority of electric motors in service. This justifies expanding the mandatory power range for IE4 motors to at least 7.5–200 kW or even 0.75–200 kW, as it will dramatically contribute to the achievement of the new ambitious goals for reducing greenhouse gas emissions. In addition, the operational advantages of IE4 SynRMs over IE4 IMs were demonstrated, such as their simpler design and manufacturing technology at a price comparable to that of IE3 IMs.


2021 ◽  
pp. 93-105
Author(s):  
Alexey Lebedev ◽  
Sergey Kireev ◽  
Marina Korchagina ◽  
Valentin Stepanov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document