power steering system
Recently Published Documents


TOTAL DOCUMENTS

383
(FIVE YEARS 47)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Hyeongho Lim ◽  
Changhee Kim ◽  
Kyongsu Yi ◽  
Kwangki Jeon

This paper describes design, implementation, and evaluation of human driving data-based Lane Keeping Assistance System (LKAS) for electric bus equipped with a hybrid electric power steering system. The hybrid electric-power steering system used in this study means a steering system in which an Electric Power Steering (EPS) system and an Electro-Hydraulic Power Steering (EHPS) system are integrated into a ball-nut. A dynamic model of hybrid EPS system including EHPS system and EPS system has been developed to generate EPS torque and EHPS force corresponding to the input torque. In order to determine proper timing of LKAS intervention, driving data of electric bus drivers were collected and driving patterns were analyzed using a 2-D normal distribution probability density function. Lane information necessary for the lane-keeping assistance system is obtained from a vision camera mounted on the electric bus. Sliding mode control is used to get a Steering Wheel Angle (SWA) required for LKAS. A Proportional–Integral (PI) control is used to obtain an overlay torque required to track the target SWA. A proposed DLC threshold has been validated using vehicle simulation software, TruckSim, and MATLAB/Simulink. It is shown that the proposed DLC threshold shows good performance in both cases of slow lane departure and fast lane departure. The proposed algorithm has been successfully implemented on the electric bus and evaluated via real-world driving tests. Test scenario setting and the evaluation of performance were carried out by ISO 11270 criteria. It is shown that the algorithm successfully prevented the electric bus from unintended lane departure satisfying ISO 11270 criteria.


2021 ◽  
pp. 107754632110034
Author(s):  
Duo Fu ◽  
Subhash Rakheja ◽  
Wen-Bin Shangguan ◽  
Hui Yin

This study investigates the angle tracking control of the electric power steering system, which is underactuated and with (possibly fast) time-varying uncertainties. We design the control based on constraint-following, that is, formulating the tracking goal as servo constraints. To tackle the uncertainty, especially the mismatched uncertainty, a robust control is proposed with two-layer performance: deterministically guaranteed and fuzzily optimized. Particularly, the control design is implemented in three steps. First, without considering uncertainty, a nominal control is designed. Second, an uncertainty decomposition technique is presented to account for uncertainty, which creatively allocates the mismatched uncertainty for the robust control design that also builds on the nominal system control. The robust scheme is deterministic without using any “if–then” rules and guarantees uniform boundedness and uniform ultimate boundedness for the system, that is, the deterministically guaranteed performance. Third, by using fuzzy set theory to describe uncertainty, a fuzzy-based performance index, including system performance and control cost, is introduced. A control parameter optimal design problem is formulated and analytically solved, that is, the fuzzily optimized performance. The effectiveness of the proposed approach is illustrated by rigorous proof and the simulation results on the electric power steering system.


Sign in / Sign up

Export Citation Format

Share Document