An Experimental and Numerical Analysis of Riveted Single Lap Joints

Author(s):  
C-P Fung ◽  
J Smart

Countersunk and snap riveted single lap joints have been examined both experimentally and numerically. A total of 11 specimens were fatigued to failure with failures occurring in either the plate or the rive***r. The failures have been metallurgically examined to determine the cause of failure. The joints have also been analysed using the finite element method. Initially a single lap joint has been modelled as a ‘stepped plate’ and the results for the stress concentration factor found to be in reasonable agreement with published data. However, the stress concentration for this joint occurred at a point away from the point of failure of a riveted joint. A fuller three-dimensional finite element model has been constructed and the stress patterns around the rivet determined. These stress patterns are discussed in relation to the results from the metallurgical examination.

2011 ◽  
Vol 189-193 ◽  
pp. 2139-2143
Author(s):  
Da Zhao Yu ◽  
Yue Liang Chen ◽  
Yong Gao ◽  
Wen Lin Liu ◽  
Yong Zhang

Based on chemical composition of the corrosion product, a mathematical model was developed to predict the extent of the pillowing deformation of lap joints of LY12CZ in term of thickness inside the joint. The model can offer the capability for predicting the extent of corrosion within the joint in terms of thickness loss at the internal surfaces of the skins from the amplitude of the pillowing of the outer skin. Three-dimensional finite element model of a bolted joint have been developed in the non-linear finite element code MSC.Marc and attempts were made to validate it by comparing results with the mathematical model. The results show that corrosion pillowing can significantly increase the stress in a lap joint for material loss below the detection limit of current nondestructive inspection techniques, thus increasing the risk of premature cracking. In addition, the analyses show that the locations of maximum stress of lap joint will change with the material loss increases. Simulating the effect of corrosion on lap joint only by reducing the panel thickness will result in neoconservative life estimates if corrosion pillowing is ignored.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2013 ◽  
Vol 336-338 ◽  
pp. 760-763
Author(s):  
Hui Yue

A short explanation of the finite element method as a powerful tool for mathematical modeling is provided, and an application using constitutive modeling of the behavior of ligaments is introduced. Few possible explanations of the role of water in ligament function are extracted from two dimensional finite element models of a classical ligament. The modeling is extended to a three dimensional finite element model for the human anterior cruciate ligament. Simulation of ligament force in pitching motion of basketball player is studied in this paper.


Sign in / Sign up

Export Citation Format

Share Document