scholarly journals Free Communication/Poster - Heat Stress and Fluid Balance: Physiological and Biochemical Responses to Heat Strain

2008 ◽  
Vol 40 (Supplement) ◽  
pp. 52
Author(s):  
&NA;
Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 155 ◽  
Author(s):  
Aleena Joy ◽  
Frank R. Dunshea ◽  
Brain J. Leury ◽  
Kristy DiGiacomo ◽  
Iain J. Clarke ◽  
...  

We compared the thermotolerance of Dorper (D) and second cross (SC) (Poll Dorset x Merino/Border Leicester) lambs by assessing physiological and biochemical responses. After acclimatization, 4–5 month old lambs of each breed were exposed to either thermo-neutral (18 °C–21 °C, 40%–50% RH, n = 12/group) or cyclic heat stress (HS) (28 °C–40 °C; 40%–60% RH, n = 12/group) for 2 weeks in climatic chambers. The HS involved exposure to temperatures of 38 °C–40 °C between 0800 and 17.00 h daily; otherwise the temperature was maintained at 28 °C. Elevated temperature increased rectal temperature (p < 0.01), respiration rate (p < 0.01) and skin temperature (p < 0.01) in both breeds, (data for 12.00 and 16.00 h pooled), but to a lesser extent in D than in SC lambs (p < 0.01). The HS increased (p < 0.01) water intake to a greater extent in SC than in D lambs and HS reduced (p < 0.05) food intake in SC lambs but not in D lambs. There were no treatment effects on blood glucose and lactate levels in either breed. Significant effects of breed (p < 0.01) and treatment (p < 0.01) were observed in blood creatinine levels, being higher in SC lambs. Higher pH (p < 0.01) and lower pCO2 (p < 0.01) were recorded under HS in both breeds. Among blood electrolytes, Cl−, Na+ and base excess were significantly (all p < 0.01) reduced under HS, with no breed differences. In conclusion, the attenuated physiological responses to HS in Dorper lambs indicates better adaptation of this breed to high environmental temperature.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 351
Author(s):  
Mohammed Mohi-Ud-Din ◽  
Md. Nurealam Siddiqui ◽  
Md. Motiar Rohman ◽  
S.V. Krishna Jagadish ◽  
Jalal Uddin Ahmed ◽  
...  

Heat stress alters photosynthetic components and the antioxidant scavenging system, negatively affecting plant growth and development. Plants overcome heat stress damage through an integrated network involving enzymatic and non-enzymatic antioxidants. This study aimed to assess physiological and biochemical responses in contrasting thermo-tolerant wheat varieties exposed to 25 °C (control) and 35 °C (heat stress), during the seedling stage. Our results revealed a substantial decrease in the photosynthetic pigments, carotenoids, anthocyanin content, and increased membrane injury index, malondialdehyde, methylglyoxal (MG), H2O2 contents and lipoxygenase activity compared to non-stress wheat seedlings. The heat-tolerant variety BARI Gom 26 (“BG26”) maintained higher cellular homeostasis compared to the heat susceptible variety Pavon 76 (“Pavon”), perpetuated by higher accumulation of proline, glycine betaine, ascorbate-glutathione cycle associated enzymes, reduced glutathione and ascorbate concentration in plant cells. Significantly lower levels of MG detoxification and antioxidant activities and ascorbate-glutathione cycle-related enzymatic activities lead to increased susceptibility in variety “Pavon”. Hierarchical clustering and principal component analysis revealed that variety “BG26” possess a combination of biochemical responses tailoring antioxidant activities that induced a higher level of tolerance. Taken together, our results provide a pipeline for establishing a trade-off between antioxidant capacity and heat tolerance to facilitate functional genomics and translational research to unravel underlying mechanisms to better adapt wheat to heat stress.


Sign in / Sign up

Export Citation Format

Share Document