scholarly journals Physiological and Biochemical Responses to Heat Stress on Barley Seedlings and Their Impact on Growth and Yield

2016 ◽  
Vol 56 (1) ◽  
pp. 319-334
Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 155 ◽  
Author(s):  
Aleena Joy ◽  
Frank R. Dunshea ◽  
Brain J. Leury ◽  
Kristy DiGiacomo ◽  
Iain J. Clarke ◽  
...  

We compared the thermotolerance of Dorper (D) and second cross (SC) (Poll Dorset x Merino/Border Leicester) lambs by assessing physiological and biochemical responses. After acclimatization, 4–5 month old lambs of each breed were exposed to either thermo-neutral (18 °C–21 °C, 40%–50% RH, n = 12/group) or cyclic heat stress (HS) (28 °C–40 °C; 40%–60% RH, n = 12/group) for 2 weeks in climatic chambers. The HS involved exposure to temperatures of 38 °C–40 °C between 0800 and 17.00 h daily; otherwise the temperature was maintained at 28 °C. Elevated temperature increased rectal temperature (p < 0.01), respiration rate (p < 0.01) and skin temperature (p < 0.01) in both breeds, (data for 12.00 and 16.00 h pooled), but to a lesser extent in D than in SC lambs (p < 0.01). The HS increased (p < 0.01) water intake to a greater extent in SC than in D lambs and HS reduced (p < 0.05) food intake in SC lambs but not in D lambs. There were no treatment effects on blood glucose and lactate levels in either breed. Significant effects of breed (p < 0.01) and treatment (p < 0.01) were observed in blood creatinine levels, being higher in SC lambs. Higher pH (p < 0.01) and lower pCO2 (p < 0.01) were recorded under HS in both breeds. Among blood electrolytes, Cl−, Na+ and base excess were significantly (all p < 0.01) reduced under HS, with no breed differences. In conclusion, the attenuated physiological responses to HS in Dorper lambs indicates better adaptation of this breed to high environmental temperature.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 351
Author(s):  
Mohammed Mohi-Ud-Din ◽  
Md. Nurealam Siddiqui ◽  
Md. Motiar Rohman ◽  
S.V. Krishna Jagadish ◽  
Jalal Uddin Ahmed ◽  
...  

Heat stress alters photosynthetic components and the antioxidant scavenging system, negatively affecting plant growth and development. Plants overcome heat stress damage through an integrated network involving enzymatic and non-enzymatic antioxidants. This study aimed to assess physiological and biochemical responses in contrasting thermo-tolerant wheat varieties exposed to 25 °C (control) and 35 °C (heat stress), during the seedling stage. Our results revealed a substantial decrease in the photosynthetic pigments, carotenoids, anthocyanin content, and increased membrane injury index, malondialdehyde, methylglyoxal (MG), H2O2 contents and lipoxygenase activity compared to non-stress wheat seedlings. The heat-tolerant variety BARI Gom 26 (“BG26”) maintained higher cellular homeostasis compared to the heat susceptible variety Pavon 76 (“Pavon”), perpetuated by higher accumulation of proline, glycine betaine, ascorbate-glutathione cycle associated enzymes, reduced glutathione and ascorbate concentration in plant cells. Significantly lower levels of MG detoxification and antioxidant activities and ascorbate-glutathione cycle-related enzymatic activities lead to increased susceptibility in variety “Pavon”. Hierarchical clustering and principal component analysis revealed that variety “BG26” possess a combination of biochemical responses tailoring antioxidant activities that induced a higher level of tolerance. Taken together, our results provide a pipeline for establishing a trade-off between antioxidant capacity and heat tolerance to facilitate functional genomics and translational research to unravel underlying mechanisms to better adapt wheat to heat stress.


2020 ◽  
Vol 52 (4) ◽  
Author(s):  
Md. Mahfuz Bazzaz ◽  
Akbar Hossain ◽  
Muhammad Farooq ◽  
Hesham Alharby ◽  
Atif Bamagoos ◽  
...  

2020 ◽  
Vol 51 (4) ◽  
pp. 1001-1014
Author(s):  
Sulaiman & Sadiq

The experiment was conducted in a greenhouse during 2017 and 2018 growing seasons to evaluate the impact of the shading and various nutrition programs on mitigating heat stress, reducing the use of chemical minerals, improving the reproductive growth and yield of tomato plant. Split-plot within Randomized Complete Block Design (RCBD) with three replications was conducted in this study. Shading factor was allocated in the main plots and the nutrition programs distributed randomly in the subplots. Results indicate that shading resulted in the decrease of daytime temperature by 5.7˚C as an average for both seasons; thus a significant increasing was found in leaf contents of macro nutrients (Nitrogen, Phosphorous, and Potassium), and micro nutrients (Iron, Zinc and Boron), except the Iron content in 2018 growing season. Furthermore, shading improved significantly the reproductive growth and tomato yield. Among the plant nutrition programs, the integrated nutrient management (INM) including the application of organic substances, bio inoculum of AMF and 50% of the recommended dose of chemical fertilizers; lead to the enhancement of nutrients content, reproductive characteristics and plant yield. Generally, combination of both shading and INM showed positive effects on plants nutrient status and persisting balance on tomato flowering growth and fruits yield.


2018 ◽  
Vol 19 (1&2) ◽  
pp. 217-222
Author(s):  
Manjunath J. Shetty ◽  
◽  
P.R. Geethalekshmi ◽  
C. Mini ◽  
Vijayaraghava Kumar ◽  
...  

2018 ◽  
Vol 5 (03) ◽  
Author(s):  
ARADHNA KUMARI ◽  
IM KHAN ◽  
ANIL KUMAR SINGH ◽  
SANTOSH KUMAR SINGH

Poplar clone Kranti was selected to assess the morphological, physiological and biochemical responses under drought at different levels of water stress, as it is a common clone used to be grown in Uttarakhand for making paper and plywood. The cuttings of Populus deltoides L. (clone Kranti) were exposed to four different watering regimes (100, 75, 50 and 25% of the field capacity) and changes in physiological and biochemical parameters related with drought tolerance were recorded. Alterations in physiological (i.e. decrease in relative water content) and biochemical parameters (i.e. increase in proline and soluble sugar content and build-up of malondialdehyde by-products) occurred in all the three levels of water stress, although drought represented the major determinant. Drought treatments (75%, 50% and 25% FC) decreased plant height, radial stem diameter, harvest index, total biomass content and RWC in all the three watering regimes compared to control (100% FC). Biochemical parameters like proline, soluble sugar and MDA content increased with severity and duration of stress, which helped plants to survive under severe stress. It was analyzed that for better wood yield poplar seedlings should avail either optimum amount of water (amount nearly equal to field capacity of soil) or maximum withdrawal up to 75% of field capacity up to seedling establishment period (60 days). Furthermore, this study manifested that acclimation to drought stress is related with the rapidity, severity, and duration of the drought event of the poplar species.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1349
Author(s):  
Ahlam Khalofah ◽  
Mona Kilany ◽  
Hussein Migdadi

Heavy metals are primarily generated and deposited in the environment, causing phytotoxicity. This work evaluated fenugreek plants’ morpho-physiological and biochemical responses under mercury stress conditions toward Ag nanoparticles and Sphingobacterium ginsenosidiumtans applications. The fabrication of Ag nanoparticles by Thymus vulgaris was monitored and described by UV/Vis analysis, FTIR, and SEM. The effect of mercury on vegetative growth was determined by measuring the root and shoots length, the number and area of leaves, the relative water content, and the weight of the green and dried plants; appraisal of photosynthetic pigments, proline, hydrogen peroxide, and total phenols content were also performed. In addition, the manipulation of Ag nanoparticles, S. ginsenosidiumtans, and their combination were tested for mercury stress. Here, Ag nanoparticles were formed at 420 nm with a uniform cuboid form and size of 85 nm. Interestingly, the gradual suppression of vegetal growth and photosynthetic pigments by mercury, Ag nanoparticles, and S. ginsenosidiumtans were detected; however, carotenoids and anthocyanins were significantly increased. In addition, proline, hydrogen peroxide, and total phenols content were significantly increased because mercury and S. ginsenosidiumtans enhance this increase. Ag nanoparticles achieve higher levels by the combination. Thus, S. ginsenosidiumtans and Ag nanoparticles could have the plausible ability to relieve and combat mercury’s dangerous effects in fenugreek.


Sign in / Sign up

Export Citation Format

Share Document