No Effect of Carbohydrate Mouth Rinsing on Cycling Time-Trial Performance in the Fed or Fasted State

2014 ◽  
Vol 46 ◽  
pp. 155
Author(s):  
Brian Snyder ◽  
Mark D. Haub
2019 ◽  
Vol 29 (5) ◽  
pp. 651-662 ◽  
Author(s):  
Sara K. Learsi ◽  
Thaysa Ghiarone ◽  
Marcos D. Silva‐Cavalcante ◽  
Victor A. Andrade‐Souza ◽  
Thays Ataide‐Silva ◽  
...  

2021 ◽  
Vol 53 ◽  
pp. 101877
Author(s):  
Ruth Boat ◽  
Ollie Williamson ◽  
Jake Read ◽  
Yoon Hyuk Jeong ◽  
Simon B. Cooper

2013 ◽  
Vol 38 (2) ◽  
pp. 134-139 ◽  
Author(s):  
Stephen C. Lane ◽  
Stephen R. Bird ◽  
Louise M. Burke ◽  
John A. Hawley

It is presently unclear whether the reported ergogenic effect of a carbohydrate (CHO) mouth rinse on cycling time-trial performance is affected by the acute nutritional status of an individual. Hence, the aim of this study was to investigate the effect of a CHO mouth rinse on a 60-min simulated cycling time-trial performance commenced in a fed or fasted state. Twelve competitive male cyclists each completed 4 experimental trials using a double-blinded Latin square design. Two trials were commenced 2 h after a meal that contained 2.5 g·kg−1 body mass of CHO (FED) and 2 after an overnight fast (FST). Prior to and after every 12.5% of total time during a performance ride, either a 10% maltodextrin (CHO) or a taste-matched placebo (PLB) solution was mouth rinsed for 10 s then immediately expectorated. There were significant main effects for both pre-ride nutritional status (FED vs. FST; p < 0.01) and CHO mouth rinse (CHO vs. PLB; p < 0.01) on power output with an interaction evident between the interventions (p < 0.05). The CHO mouth rinse improved mean power to a greater extent after an overnight fast (282 vs. 273 W, 3.4%; p < 0.01) compared with a fed state (286 vs. 281 W, 1.8%; p < 0.05). We concluded that a CHO mouth rinse improved performance to a greater extent in a fasted compared with a fed state; however, optimal performance was achieved in a fed state with the addition of a CHO mouth rinse.


2014 ◽  
Vol 28 (9) ◽  
pp. 2513-2520 ◽  
Author(s):  
Renato A.S. Silva ◽  
Fernando L. Silva-Júnior ◽  
Fabiano A. Pinheiro ◽  
Patrícia F.M. Souza ◽  
Daniel A. Boullosa ◽  
...  

2008 ◽  
Vol 26 (14) ◽  
pp. 1477-1487 ◽  
Author(s):  
Marc J. Quod ◽  
David T. Martin ◽  
Paul B. Laursen ◽  
Andrew S. Gardner ◽  
Shona L. Halson ◽  
...  

2010 ◽  
Vol 5 (2) ◽  
pp. 140-151 ◽  
Author(s):  
Mohammed Ihsan ◽  
Grant Landers ◽  
Matthew Brearley ◽  
Peter Peeling

Purpose:The effect of crushed ice ingestion as a precooling method on 40-km cycling time trial (CTT) performance was investigated.Methods:Seven trained male subjects underwent a familiarization trial and two experimental CTT which were preceded by 30 min of either crushed ice ingestion (ICE) or tap water (CON) consumption amounting to 6.8 g⋅kg-1 body mass. The CTT required athletes to complete 1200 kJ of work on a wind-braked cycle ergometer. During the CTT, gastrointestinal (Tgi) and skin (Tsk) temperatures, cycling time, power output, heart rate (HR), blood lactate (BLa), ratings of perceived exertion (RPE) and thermal sensation (RPTS) were measured at set intervals of work.Results:Precooling lowered the Tgi after ICE significantly more than CON (36.74 ± 0.67°C vs 37.27 ± 0.24°C, P < .05). This difference remained evident until 200 kJ of work was completed on the bike (37.43 ± 0.42°C vs 37.64 ± 0.21°C). No significant differences existed between conditions at any time point for Tsk, RPE or HR (P > .05). The CTT completion time was 6.5% faster in ICE when compared with CON (ICE: 5011 ± 810 s, CON: 5359 ± 820 s, P < .05).Conclusions:Crushed ice ingestion was effective in lowering Tgi and improving subsequent 40-km cycling time trial performance. The mechanisms for this enhanced exercise performance remain to be clarified.


2019 ◽  
Vol 14 (3) ◽  
pp. 323-330 ◽  
Author(s):  
Steve H. Faulkner ◽  
Iris Broekhuijzen ◽  
Margherita Raccuglia ◽  
Maarten Hupperets ◽  
Simon G. Hodder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document