cycling time trial
Recently Published Documents


TOTAL DOCUMENTS

295
(FIVE YEARS 64)

H-INDEX

35
(FIVE YEARS 5)

2022 ◽  
Vol 3 ◽  
Author(s):  
Jared Ferguson ◽  
Amir Hadid ◽  
Yoram Epstein ◽  
Dennis Jensen

Purpose: Examine the effect of synthetic fabrics (SYN, 60% polyester: 40% nylon) vs. 100% cotton fabric (CTN) on the 20-km cycling time trial (20 kmCTT) performance of competitive cyclists and triathletes.Methods: In this randomized controlled crossover study, 15 adults (5 women) aged 29.6 ± 2.7 years (mean ± SE) with a peak rate of O2 consumption of 60.0 ± 2.0 ml/kg/min completed a 20 kmCTT under ambient laboratory conditions (24.3 ± 0.7°C and 17 ± 7% relative humidity) with a simulated wind of ~3 m/s while wearing SYN or CTN clothing ensembles. Both ensembles were of snowflake mesh bi-layer construction and consisted of a loose-fitting long-sleeved shirt with full-length trousers.Results: Participants maintained a significantly (p < 0.05) higher cycling speed and power output over the last 6-km of the 20 kmCTT while wearing the SYN vs. CTN ensemble (e.g., by 0.98 km/h and 18.4 watts at the 20-km mark). Consequently, 20 kmCTT duration was significantly reduced by 15.7 ± 6.8 sec or 0.8 ± 0.3% during SYN vs. CTN trials (p < 0.05). Improved 20 kmCTT performance with SYN vs. CTN clothing could not be explained by concurrent differences in esophageal temperature, sweat rate, ratings of perceived exertion and/or cardiometabolic responses to exercise. However, it was accompanied by significantly lower mean skin temperatures (~1°C) and more favorable ratings of perceived clothing comfort and thermal sensation during exercise.Conclusion: Under the experimental conditions of the current study, athletic clothing made of synthetic fabrics significantly improved the 20 kmCTT performance of endurance-trained athletes by optimizing selected thermoregulatory and perceptual responses to exercise.


2021 ◽  
Vol 11 (24) ◽  
pp. 12098
Author(s):  
Anna Katharina Dunst ◽  
René Grüneberger

In cycling, performance models are used to investigate factors that determine performance and to optimise competition results. We present an innovative and easily applicable mathematical model describing time-resolved approaches for both the physical aspects of tractional resistance and the physiological side of propelling force generated by muscular activity and test its validity to reproduce and forecast time trials in track cycling. Six elite track cyclists completed a special preparation and two sprint time trials in an official velodrome under continuous measurement of crank force and cadence. Fatigue-free force-velocity profiles were calculated, and their fatigue-induced changes were determined by non-linear regression analysis using a monoexponential equation at a constant slope. Model parameters were calibrated based on pre-exercise performance testing and the first of the two time-trials and then used to predict the performance of the second sprint. Measured values for power output and cycling velocity were compared to the modelled data. The modelled results were highly correlated to the measured values (R2>0.99) without any difference between runs (p>0.05; d<0.1). Our mathematical model can accurately describe sprint track cycling time trial performance. It is simple enough to be used in practice yet sufficiently accurate to predict highly dynamic maximal sprint performances. It can be employed for the evaluation of completed runs, to forecast expected results with different setups, and to study various contributing factors and quantify their effect on sprint cycling performance.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4309
Author(s):  
Russ Best ◽  
Seana Crosby ◽  
Nicolas Berger ◽  
Kerin McDonald

The current study compared mouth swills containing carbohydrate (CHO), menthol (MEN) or a combination (BOTH) on 40 km cycling time trial (TT) performance in the heat (32 °C, 40% humidity, 1000 W radiant load) and investigates associated physiological (rectal temperature (Trec), heart rate (HR)) and subjective measures (thermal comfort (TC), thermal sensation (TS), thirst, oral cooling (OC) and RPE (legs and lungs)). Eight recreationally trained male cyclists (32 ± 9 y; height: 180.9 ± 7.0 cm; weight: 76.3 ± 10.4 kg) completed familiarisation and three experimental trials, swilling either MEN, CHO or BOTH at 10 km intervals (5, 15, 25, 35 km). The 40 km TT performance did not differ significantly between conditions (F2,14 = 0.343; p = 0.715; η2 = 0.047), yet post-hoc testing indicated small differences between MEN and CHO (d = 0.225) and MEN and BOTH (d = 0.275). Subjective measures (TC, TS, RPE) were significantly affected by distance but showed no significant differences between solutions. Within-subject analysis found significant interactions between solution and location upon OC intensity (F28,196 = 2.577; p < 0.001; η2 = 0.269). While solutions containing MEN resulted in a greater sensation of OC, solutions containing CHO experienced small improvements in TT performance. Stimulation of central CHO pathways during self-paced cycling TT in the heat may be of more importance to performance than perceptual cooling interventions. However, no detrimental effects are seen when interventions are combined.


2021 ◽  
Vol 12 ◽  
Author(s):  
Julie Chambault ◽  
Grégorine Grand ◽  
Bengt Kayser

Objectives: We tested the hypotheses that respiratory muscle endurance training (RMET) improves endurance cycling performance differently in women and men and more so in hypoxia than in normoxia.Design: A prospective pre–post cross-over study with two testing conditions.Methods: Healthy and active women (seven, 24 ± 4 years, mean ± standard deviation [SD]) and men (seven, 27 ± 5 years) performed incremental cycling to determine maximum oxygen consumption (VO2peak) and power output (Wpeak) and on different days two 10-km cycling time trials (TTs) in normoxia and normobaric hypoxia (FiO2, 0.135, ~3,500 m equivalent), in a balanced randomized order. Next they performed supervised RMET in normoxia (4 weeks, 5 days/week, 30 min/day eucapnic hyperpnea at ~60% predicted maximum voluntary ventilation) followed by identical post-tests. During TTs, heart rate, ear oximetry reading, and Wpeak were recorded.Results: The VO2peak and Wpeak values were unchanged after RMET. The TT was improved by 7 ± 6% (p &lt; 0.001) in normoxia and 16 ± 6% (p &lt; 0.001) in hypoxia. The difference between normoxic and hypoxic TT was smaller after RMET as compared with that before RMET (14% vs. 21%, respectively, p &lt; 0.001). All effects were greater in women (p &lt; 0.001). The RMET did not change the heart rate or ear oximetry reading during TTs.Conclusion: We found a greater effect of RMET on cycling TT performance in women than in men, an effect more pronounced in hypoxia. These findings are congruent with the contention of a more pronounced performance-limiting role of the respiratory system during endurance exercise in hypoxia compared with normoxia and more so in women whose respiratory system is undersized compared with that of men.


2021 ◽  
Vol 2 (2) ◽  
pp. 4-7
Author(s):  
Boram Lim ◽  
John Mercer

Given the nature of a triathlon race, the cycling distance is typically much longer than swimming and running across race distances from sprint to Ironman. Besides, triathletes should try to not only maintain a certain level of cycling power but also consider cycling economy to make a better performance in both the cycling portion and the overall race (Bonacci et al., 2013; Sleivert & Rowland, 1996; Swinnen et al., 2018). The cycling economy is an important indicator to predict cycling performance in terms of time to complete a certain distance. Both cycling economy and performance are determined by the interaction between mechanical output and physiological input (Barratt et al., 2016; Korff et al., 2007; Sunde et al., 2010). Theoretically, improving cycling economy elicits a better cycling time trial performance and/or less physiological demands (e.g., rate of oxygen consumption: V̇O2, heart rate) to complete at a given distance. The crank arm length (CAL) is one of the important factors among many variables that affect the economy and performance in cycling (McDaniel et al., 2002). Therefore, the appropriate selection of CAL may play a key role in improving the cycling portion of the race and entire triathlon performance. The purpose of this review is to identify the effects of acute changing CAL on physiological and biomechanical responses during cycling.


Sci ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 32
Author(s):  
Abi Auten ◽  
Kristina Cavey ◽  
Jacob Reed ◽  
Forrest Dolgener ◽  
Terence Moriarty

Background: Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low levels of a constant current via scalp electrodes to specifically targeted areas of the brain. The effects of tDCS on whole-body exercise performance has been of interest in recent literature. The purpose of the current investigation was to investigate if tDCS, administered via Halo Sport, influences time trial performance in trained cyclists, and if changes in exercise performance are associated with prefrontal cortex (PFC) activation and/or muscle oxygenation (SmO2). Methods: Twelve recreationally trained cyclists volunteered to participate in a crossover study design involving two 10-kilometer time trials following 20 min of tDCS or a sham condition. Results: t-tests showed there was no significant difference in performance (time to completion) or physiological measures (blood lactate (BL) concentration, heart rate (HR), SmO2, PFC oxygenation) between the Halo and sham conditions. Conclusions: These results indicate that the application of tDCS via Halo Sport does not induce changes in exercise performance or related physiological parameters during a 10-kilometer cycling time trial.


Author(s):  
Abi Auten ◽  
Kristina Cavey ◽  
Jacob Reed ◽  
Forrest Dolgener ◽  
Terence Moriarty

Background: Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low levels of a constant current via scalp electrodes to specifically targeted areas of the brain. The effects of tDCS on whole-body exercise performance has been of interest in recent literature. The purpose of the current investigation was to investigate if tDCS, administered via Halo Sport, influences time trial performance in trained cyclists, and if changes in exercise performance are associated with prefrontal cortex (PFC) activation and/or muscle oxygenation (SmO2). Methods: Twelve recreationally trained cyclists volunteered to participate in two 10-kilometer time trials following 20 minutes of tDCS or a sham condition. Results: T-tests showed there was no significant difference in performance (time to completion) or physiological measures (BLa-, HR, SmO2, PFC oxygenation) between the Halo and sham conditions. Conclusions: These results indicate that the application of tDCS via Halo Sport does not induce changes in exercise performance or related physiological parameters during a 10-kilometer cycling time trial.


2021 ◽  
Vol 53 ◽  
pp. 101877
Author(s):  
Ruth Boat ◽  
Ollie Williamson ◽  
Jake Read ◽  
Yoon Hyuk Jeong ◽  
Simon B. Cooper

Sign in / Sign up

Export Citation Format

Share Document