time trial
Recently Published Documents


TOTAL DOCUMENTS

1244
(FIVE YEARS 361)

H-INDEX

60
(FIVE YEARS 9)

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 232
Author(s):  
Gaia Giuriato ◽  
Massimo Venturelli ◽  
Alexs Matias ◽  
Edgard M. K. V. K. Soares ◽  
Jessica Gaetgens ◽  
...  

Capsaicin (CAP) activates the transient receptor potential vanilloid 1 (TRPV1) channel on sensory neurons, improving ATP production, vascular function, fatigue resistance, and thus exercise performance. However, the underlying mechanisms of CAP-induced ergogenic effects and fatigue-resistance, remain elusive. To evaluate the potential anti-fatigue effects of CAP, 10 young healthy males performed constant-load cycling exercise time to exhaustion (TTE) trials (85% maximal work rate) after ingestion of placebo (PL; fiber) or CAP capsules in a blinded, counterbalanced, crossover design, while cardiorespiratory responses were monitored. Fatigue was assessed with the interpolated twitch technique, pre-post exercise, during isometric maximal voluntary contractions (MVC). No significant differences (p > 0.05) were detected in cardiorespiratory responses and self-reported fatigue (RPE scale) during the time trial or in TTE (375 ± 26 and 327 ± 36 s, respectively). CAP attenuated the reduction in potentiated twitch (PL: −52 ± 6 vs. CAP: −42 ± 11%, p = 0.037), and tended to attenuate the decline in maximal relaxation rate (PL: −47 ± 33 vs. CAP: −29 ± 68%, p = 0.057), but not maximal rate of force development, MVC, or voluntary muscle activation. Thus, CAP might attenuate neuromuscular fatigue through alterations in afferent signaling or neuromuscular relaxation kinetics, perhaps mediated via the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) pumps, thereby increasing the rate of Ca2+ reuptake and relaxation.


2022 ◽  
Vol 3 ◽  
Author(s):  
Manuel Matzka ◽  
Robert Leppich ◽  
Hans-Christer Holmberg ◽  
Billy Sperlich ◽  
Christoph Zinner

Purpose: To evaluate retrospectively the training intensity distribution (TID) among highly trained canoe sprinters during a single season and to relate TID to changes in performance.Methods: The heart rates during on-water training by 11 German sprint kayakers (7 women, 4 men) and one male canoeist were monitored during preparation periods (PP) 1 and 2, as well as during the period of competition (CP) (total monitoring period: 37 weeks). The zones of training intensity (Z) were defined as Z1 [<80% of peak oxygen consumption (VO2peak)], Z2 (81–87% VO2peak) and Z3 (>87% VO2peak), as determined by 4 × 1,500-m incremental testing on-water. Prior to and after each period, the time required to complete the last 1,500-m stage (all-out) of the incremental test (1,500-m time-trial), velocities associated with 2 and 4 mmol·L−1 blood lactate (v2[BLa], v4[BLa]) and VO2peak were determined.Results: During each period, the mean TID for the entire group was pyramidal (PP1: 84/12/4%, PP2: 80/12/8% and CP: 91/5/4% for Z1, Z2, Z3) and total training time on-water increased from 5.0 ± 0.9 h (PP1) to 6.1 ± 0.9 h (PP2) and 6.5 ± 1.0 h (CP). The individual ranges for Z1, Z2 and Z3 were 61–96, 2–26 and 0–19%. During PP2 VO2peak (25.5 ± 11.4%) markedly increased compared to PP1 and CP and during PP1 v2[bla] (3.6 ± 3.4%) showed greater improvement compared to PP2, but not to CP. All variables related to performance improved as the season progressed, but no other effects were observed. With respect to time-trial performance, the time spent in Z1 (r = 0.66, p = 0.01) and total time in all three zones (r = 0.66, p = 0.01) showed positive correlations, while the time spent in Z2 (r = −0.57, p = 0.04) was negatively correlated.Conclusions: This seasonal analysis of the effects of training revealed extensive inter-individual variability. Overall, TID was pyramidal during the entire period of observation, with a tendency toward improvement in VO2peak, v2[bla], v4[bla] and time-trial performance. During PP2, when the COVID-19 lockdown was in place, the proportion of time spent in Z3 doubled, while that spent in Z1 was lowered; the total time spent training on water increased; these changes may have accentuated the improvement in performance during this period. A further increase in total on-water training time during CP was made possible by reductions in the proportions of time spent in Z2 and Z3, so that more fractions of time was spent in Z1.


2022 ◽  
Vol 3 ◽  
Author(s):  
Jared Ferguson ◽  
Amir Hadid ◽  
Yoram Epstein ◽  
Dennis Jensen

Purpose: Examine the effect of synthetic fabrics (SYN, 60% polyester: 40% nylon) vs. 100% cotton fabric (CTN) on the 20-km cycling time trial (20 kmCTT) performance of competitive cyclists and triathletes.Methods: In this randomized controlled crossover study, 15 adults (5 women) aged 29.6 ± 2.7 years (mean ± SE) with a peak rate of O2 consumption of 60.0 ± 2.0 ml/kg/min completed a 20 kmCTT under ambient laboratory conditions (24.3 ± 0.7°C and 17 ± 7% relative humidity) with a simulated wind of ~3 m/s while wearing SYN or CTN clothing ensembles. Both ensembles were of snowflake mesh bi-layer construction and consisted of a loose-fitting long-sleeved shirt with full-length trousers.Results: Participants maintained a significantly (p < 0.05) higher cycling speed and power output over the last 6-km of the 20 kmCTT while wearing the SYN vs. CTN ensemble (e.g., by 0.98 km/h and 18.4 watts at the 20-km mark). Consequently, 20 kmCTT duration was significantly reduced by 15.7 ± 6.8 sec or 0.8 ± 0.3% during SYN vs. CTN trials (p < 0.05). Improved 20 kmCTT performance with SYN vs. CTN clothing could not be explained by concurrent differences in esophageal temperature, sweat rate, ratings of perceived exertion and/or cardiometabolic responses to exercise. However, it was accompanied by significantly lower mean skin temperatures (~1°C) and more favorable ratings of perceived clothing comfort and thermal sensation during exercise.Conclusion: Under the experimental conditions of the current study, athletic clothing made of synthetic fabrics significantly improved the 20 kmCTT performance of endurance-trained athletes by optimizing selected thermoregulatory and perceptual responses to exercise.


Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 141
Author(s):  
David Jeker ◽  
Pascale Claveau ◽  
Mohamed El Fethi Abed ◽  
Thomas A. Deshayes ◽  
Claude Lajoie ◽  
...  

We compared the effect of programmed (PFI) and thirst-driven (TDFI) fluid intake on prolonged cycling performance and exercise associated muscle cramps (EAMC). Eight male endurance athletes (26 ± 6 years) completed two trials consisting of 5 h of cycling at 61% V˙O2peak followed by a 20 km time-trial (TT) in a randomized crossover sequence at 30 °C, 35% relative humidity. EAMC was assessed after the TT with maximal voluntary isometric contractions of the shortened right plantar flexors. Water intake was either programmed to limit body mass loss to 1% (PFI) or consumed based on perceived thirst (TDFI). Body mass loss reached 1.5 ± 1.0% for PFI and 2.5 ± 0.9% for TDFI (p = 0.10). Power output during the 20 km TT was higher (p < 0.05) for PFI (278 ± 41 W) than TDFI (263 ± 39 W), but the total performance time, including the breaks to urinate, was similar (p = 0.48) between conditions. The prevalence of EAMC of the plantar flexors was similar between the drinking conditions. Cyclists competing in the heat for over 5 h may benefit from PFI aiming to limit body mass loss to <2% when a high intensity effort is required in the later phase of the race and when time lost for urination is not a consideration.


Author(s):  
Dileep Tirkey ◽  
Shabir Kumar Anant ◽  
Reeta Venugopal

Objective: To find out the effect of 15 days of beetroot juice (BRJ) supplementation on 10 km time trial performance in trained distance runners of University level.Methods: Thirty trained athletes,15 males age = 26.3 y ± 1.52, height 170.5 ± 0.2 cm, and 15 females, age = 25.2 y ± 1.30, height 157.8 ± 0.3 cm were selected for the present study. Two experimental and two control groups were made consisting of males and females separately. The first group of male and female (Experimental Group) consumed the BRJdaily 250 ml/dayand the second group (Control Group) did not consume beetroot juice. Both groups underwent a regular athletics training programme. All the subjects were tested on Ten Km Time Trial (TT)performance before supplementation of BRJ and after 15 days of supplementation of BRJ. Results: The significant effect of BRJ supplementationwas observed (p < 0.05) between pre and post measures of 10 km TT in experimental group. BRJ supplementation significantly improved performance in 10 km TT in both groups (respectively male; P< 0.006; F=11.09, ES = .480, female; P < 0.000, F=40.45, ES = .771.Conclusion: Consumption of BRJ250 ml/day in improved 10 km time trial performance in traineddistance runners.


2021 ◽  
Vol 11 (24) ◽  
pp. 12098
Author(s):  
Anna Katharina Dunst ◽  
René Grüneberger

In cycling, performance models are used to investigate factors that determine performance and to optimise competition results. We present an innovative and easily applicable mathematical model describing time-resolved approaches for both the physical aspects of tractional resistance and the physiological side of propelling force generated by muscular activity and test its validity to reproduce and forecast time trials in track cycling. Six elite track cyclists completed a special preparation and two sprint time trials in an official velodrome under continuous measurement of crank force and cadence. Fatigue-free force-velocity profiles were calculated, and their fatigue-induced changes were determined by non-linear regression analysis using a monoexponential equation at a constant slope. Model parameters were calibrated based on pre-exercise performance testing and the first of the two time-trials and then used to predict the performance of the second sprint. Measured values for power output and cycling velocity were compared to the modelled data. The modelled results were highly correlated to the measured values (R2>0.99) without any difference between runs (p>0.05; d<0.1). Our mathematical model can accurately describe sprint track cycling time trial performance. It is simple enough to be used in practice yet sufficiently accurate to predict highly dynamic maximal sprint performances. It can be employed for the evaluation of completed runs, to forecast expected results with different setups, and to study various contributing factors and quantify their effect on sprint cycling performance.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4477
Author(s):  
Thomas A. Deshayes ◽  
Nicolas Daigle ◽  
David Jeker ◽  
Martin Lamontagne-Lacasse ◽  
Maxime Perreault-Briere ◽  
...  

This study aimed to examine whether repeated exposures to low (2%) and moderate (4%) exercise-induced hypohydration may reverse the potentially deleterious effect of hypohydration on endurance performance. Using a randomized crossover protocol, ten volunteers (23 years, V˙O2max: 54 mL∙kg−1∙min−1) completed two 4-week training blocks interspersed by a 5-week washout period. During one block, participants replaced all fluid losses (EUH) while in the other they were fluid restricted (DEH). Participants completed three exercise sessions per week (walking/running, 55% V˙O2max, 40 °C): (1) 1 h while fluid restricted or drinking ad libitum, (2) until 2 and (3) 4% of body mass has been lost or replaced. During the first and the fourth week of each training block, participants completed a 12 min time-trial immediately after 2% and 4% body mass loss has been reached. Exercise duration and distance completed (14.1 ± 2.7 vs. 6.9 ± 1.5 km) during the fixed-intensity exercise bouts were greater in the 4 compared to the 2% condition (p < 0.01) with no difference between DEH and EUH. During the first week, heart rate, rectal temperature and perceived exertion were higher (p < 0.05) with DEH than EUH, and training did not change these outcomes. Exercise-induced hypohydration of 2% and 4% body mass impaired time-trial performance in a practical manner both at the start and end of the training block. In conclusion, exercise-induced hypohydration of 2% and 4% body mass impairs 12 min walking/running time-trial, and repeated exposures to these hypohydration levels cannot reverse the impairment in performance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kirstie Jodie Turner ◽  
David Bruce Pyne ◽  
Julien D. Périard ◽  
Anthony John Rice

Purpose: The effects of two different high-intensity training methods on 2,000 m rowing ergometer performance were examined in a feasibility study of 24 national-level rowers aged 18–27 years (17 males, 2,000 m ergometer time trial 6:21.7 ± 0:14.6 (min:s) and seven females, 2,000 m ergometer 7:20.3 ± 0:12.1. Habitual training for all participants was ~12–16 h per week).Methods: 16 high-intensity ergometer sessions were completed across two 3-week periods. Participants were allocated into two groups according to baseline 2,000 m time. High-intensity interval session-sprint-interval session (HIIT-SIT) completed eight HIIT (8 × 2.5 min intervals; 95% of 2,000 m wattage) followed by eight SIT (three sets of 7 × 30 s intervals; maximum effort). SIT-HIIT completed eight SIT sessions followed by eight HIIT sessions. Both a 2,000-m time trial and a progressive incremental test finishing with 4 min “all-out” performance were completed before and after each 3-week phase.Results: Both groups showed similar improvements in 2,000 m time and 4 min “all-out” distance after the first 3 weeks (2,000 m time: HIIT-SIT: −2.0 ± 0.6%, mean ± 90% CL, p = 0.01; SIT-HIIT: −1.5 ± 0.3%, p = 0.01) with no significant difference between groups. HIIT-SIT demonstrated the greatest improvements in submaximal heart rate (HR) during the progressive incremental test with eight sessions of HIIT showing a greater reduction in submaximal HR than eight sessions of SIT. The net improvement of 16 high-intensity sessions on 2,000 m time was −2.5% for HIIT-SIT (−10.6 ± 3.9 s, p = 0.01) and − 2.2% for SIT-HIIT (−9.0 ± 5.7 s, p = 0.01) and for 4 min “all-out” performance was 3.1% for HIIT-SIT (36 ± 25 m, p = 0.01) and 2.8% for SIT-HIIT (33 ± 27 m, p = 0.01).Conclusion: Eight sessions of high-intensity training can improve 2,000 m ergometer rowing performance in national-level rowers, with a further eight sessions producing minimal additional improvement. The method of high-intensity training appears less important than the dose.


Author(s):  
Noah M. A. d’Unienville ◽  
Henry T. Blake ◽  
Alison M. Coates ◽  
Alison M. Hill ◽  
Maximillian J. Nelson ◽  
...  

Abstract Background Increasing nitric oxide bioavailability may induce physiological effects that enhance endurance exercise performance. This review sought to evaluate the performance effects of consuming foods containing compounds that may promote nitric oxide bioavailability. Methods Scopus, Web of Science, Ovid Medline, EMBASE and SportDiscus were searched, with included studies assessing endurance performance following consumption of foods containing nitrate, L-arginine, L-citrulline or polyphenols. Random effects meta-analysis was conducted, with subgroup analyses performed based on food sources, sex, fitness, performance test type and supplementation protocol (e.g. duration). Results One hundred and eighteen studies were included in the meta-analysis, which encompassed 59 polyphenol studies, 56 nitrate studies and three L-citrulline studies. No effect on exercise performance following consumption of foods rich in L-citrulline was identified (SMD=-0.03, p=0.24). Trivial but significant benefits were demonstrated for consumption of nitrate and polyphenol-rich foods (SMD=0.15 and 0.17, respectively, p<0.001), including performance in time-trial, time-to-exhaustion and intermittent-type tests, and following both acute and multiple-day supplementation, but no effect of nitrate or polyphenol consumption was found in females. Among nitrate-rich foods, beneficial effects were seen for beetroot, but not red spinach or Swiss chard and rhubarb. For polyphenol-rich foods, benefits were found for grape, (nitrate-depleted) beetroot, French maritime pine, Montmorency cherry and pomegranate, while no significant effects were evident for New Zealand blackcurrant, cocoa, ginseng, green tea or raisins. Considerable heterogeneity between polyphenol studies may reflect food-specific effects or differences in study designs and subject characteristics. Well-trained males (V̇O2max ≥65 ml.kg.min-1) exhibited small, significant benefits following polyphenol, but not nitrate consumption. Conclusion Foods rich in polyphenols and nitrate provide trivial benefits for endurance exercise performance, although these effects may be food dependent. Highly trained endurance athletes do not appear to benefit from consuming nitrate-rich foods but may benefit from polyphenol consumption. Further research into food sources, dosage and supplementation duration to optimise the ergogenic response to polyphenol consumption is warranted. Further studies should evaluate whether differential sex-based responses to nitrate and polyphenol consumption are attributable to physiological differences or sample size limitations. Other The review protocol was registered on the Open Science Framework (https://osf.io/u7nsj) and no funding was provided.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Felipe Sampaio-Jorge ◽  
Anderson Pontes Morales ◽  
Rafael Pereira ◽  
Thiago Barth ◽  
Beatriz Gonçalves Ribeiro

AbstractThe present study was designed to investigate the effects of different caffeine dietary strategies to compare the impact on athletic performance and cardiac autonomic response. The order of the supplementation was randomly assigned: placebo(4-day)-placebo(acute)/PP, placebo(4-day)-caffeine(acute)/PC and caffeine(4-day)-caffeine(acute)/CC. Fourteen male recreationally-trained cyclists ingested capsules containing either placebo or caffeine (6 mg kg−1) for 4 days. On day 5 (acute), capsules containing placebo or caffeine (6 mg kg−1) were ingested 60 min before completing a 16 km time-trial (simulated cycling). CC and PC showed improvements in time (CC vs PP, Δ − 39.3 s and PC vs PP, Δ − 43.4 s; P = 0.00; ƞ2 = 0.33) and in output power (CC vs PP, Δ 5.55 w and PC vs PP, Δ 6.17 w; P = 0.00; ƞ2 = 0.30). At the final of the time-trial, CC and PC exhibited greater parasympathetic modulation (vagal tone) when compared to the PP condition (P < 0.00; ƞ2 = 0.92). Our study provided evidence that acute caffeine intake (6 mg∙kg−1) increased performance (time-trial) and demonstrated a relevant cardioprotective effect, through increased vagal tone.


Sign in / Sign up

Export Citation Format

Share Document