scholarly journals Exercising Skeletal Muscle Blood Flow is Diminished in a Rat Model of Pulmonary Arterial Hypertension

2019 ◽  
Vol 51 (Supplement) ◽  
pp. 614
Author(s):  
Gary M. Long ◽  
Andrea Frump ◽  
Ashley Troutman ◽  
Melissa Mailand ◽  
Kaylee Ann Ellis ◽  
...  
2021 ◽  
Vol 53 (8S) ◽  
pp. 92-92
Author(s):  
Gary Marshall Long ◽  
Ashley Troutman ◽  
Derrick Gray ◽  
Andrea Frump ◽  
Amanda Fisher ◽  
...  

2021 ◽  
Author(s):  
Ever Espino‐Gonzalez ◽  
Peter G. Tickle ◽  
Alan P. Benson ◽  
Roger W. P. Kissane ◽  
Graham N. Askew ◽  
...  

2020 ◽  
Vol 52 (7S) ◽  
pp. 223-224
Author(s):  
Gary M. Long ◽  
Andrea Frump ◽  
Ashley Troutman ◽  
Melissa Mailand ◽  
Kaylee Ann Ellis ◽  
...  

2019 ◽  
Vol 126 (2) ◽  
pp. 99-109
Author(s):  
Eva Malikova ◽  
Mattias Carlström ◽  
Zuzana Kmecova ◽  
Margareta Marusakova ◽  
Bianka Zsigmondova ◽  
...  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Aifeng Chen ◽  
Shibiao Ding ◽  
Liangliang Kong ◽  
Jianpu Xu ◽  
Fei He ◽  
...  

AbstractPulmonary arterial hypertension (PAH) is a group of diseases with an increase of pulmonary artery pressure (PAP) and pulmonary vascular resistance. Here, the effects of safflower injection, a preparation of Chinese herbs, was investigated in a monocrotaline (MCT)-induced PAH rat model. PAP, carotid artery pressure (CAP), and the right ventricular hypertrophy index (RVHI) increased in the PAH group, while safflower injection was able to inhibit this increase to similar levels as observed in the normal group. The arteriole wall of the lungs and cardiac muscle were thickened and edema was observed in the PAH group, while these pathologies were improved in the herb-treated group in a dose-dependent manner. MCT treatment induced proliferation of pulmonary artery smooth muscle cells (PASMCs), which was inhibited by safflower injection in a dose-dependent manner. Our experimental results demonstrated that safflower injection can regulate pulmonary arterial remodeling through affecting the expression of connective tissue growth factor, transforming growth factor-β, integrin, collagen or fibronectin, which subsequently affected the thicknesses of the arteriole walls of the lungs and cardiac muscle, and thereby benefits the control of PAH. This means safflower injection improved the abnormalities in PAP, CAP and RVHI, and pulmonary arterial remodeling through regulation of remodeling factors.


2004 ◽  
Vol 97 (3) ◽  
pp. 1130-1137 ◽  
Author(s):  
Csongor Csekő ◽  
Zsolt Bagi ◽  
Akos Koller

We hypothesized that hydrogen peroxide (H2O2) has a role in the local regulation of skeletal muscle blood flow, thus significantly affecting the myogenic tone of arterioles. In our study, we investigated the effects of exogenous H2O2 on the diameter of isolated, pressurized (at 80 mmHg) rat gracilis skeletal muscle arterioles (diameter of ∼150 μm). Lower concentrations of H2O2 (10−6–3 × 10−5 M) elicited constrictions, whereas higher concentrations of H2O2 (6 × 10−5–3 × 10−4 M), after initial constrictions, caused dilations of arterioles (at 10−4 M H2O2, −19 ± 1% constriction and 66 ± 4% dilation). Endothelium removal reduced both constrictions (to −10 ± 1%) and dilations (to 33 ± 3%) due to H2O2. Constrictions due to H2O2 were completely abolished by indomethacin and the prostaglandin H2/thromboxane A2 (PGH2/TxA2) receptor antagonist SQ-29548. Dilations due to H2O2 were significantly reduced by inhibition of nitric oxide synthase (to 38 ± 7%) but were unaffected by clotrimazole or sulfaphenazole (inhibitors of cytochrome P-450 enzymes), indomethacin, or SQ-29548. In endothelium-denuded arterioles, clotrimazole had no effect, whereas H2O2-induced dilations were significantly reduced by charybdotoxin plus apamin, inhibitors of Ca2+-activated K+ channels (to 24 ± 3%), the selective blocker of ATP-sensitive K+ channels glybenclamide (to 14 ± 2%), and the nonselective K+-channel inhibitor tetrabutylammonium (to −1 ± 1%). Thus exogenous administration of H2O2 elicits 1) release of PGH2/TxA2 from both endothelium and smooth muscle, 2) release of nitric oxide from the endothelium, and 3) activation of K+ channels, such as Ca2+-activated and ATP-sensitive K+ channels in the smooth muscle resulting in biphasic changes of arteriolar diameter. Because H2O2 at low micromolar concentrations activates several intrinsic mechanisms, we suggest that H2O2 contributes to the local regulation of skeletal muscle blood flow in various physiological and pathophysiological conditions.


2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Zachary Barrett‐O'Keefe ◽  
Stephen J. Ives ◽  
Joel D. Trinity ◽  
Melissa A.H. Witman ◽  
Matthew J. Rossman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document