scholarly journals Resistance Exercise With Blood Flow Restriction Under Different Occlusion Pressure On Muscular Performance

2020 ◽  
Vol 52 (7S) ◽  
pp. 844-844
Author(s):  
Jieming Lu ◽  
Zhiqiang Lian ◽  
Peng Sun ◽  
Wulan Li ◽  
Shanyun Liu ◽  
...  
2018 ◽  
Vol 105 (3) ◽  
pp. 276-284 ◽  
Author(s):  
SD Soligon ◽  
ME Lixandrão ◽  
TMPC Biazon ◽  
V Angleri ◽  
H Roschel ◽  
...  

Low-intensity resistance exercise with blood-flow restriction (BFR) promotes similar adaptations to high-intensity resistance exercise (HI-RE). Interestingly, BFR has been demonstrated to be effective for a wide range of occlusion pressures. However, the occlusion pressure magnitude may alter the psychophysiological stress related to BFR as measured by rating of perceived exertion scale (RPE) and rating of pain. We aimed to compare the RPE and pain levels across different magnitudes of occlusion pressures, promoting new knowledge regarding occlusion pressure on stress related to BFR. All BFR protocols ranging between 40% and 80% of total arterial occlusion (BFR40, BFR50, BFR60, BFR70, and BFR80) were compared to HI-RE in 12 participants using a randomized and crossover design 72 h apart. BFR protocols and HI-RE were performed with 30% and 80% of one-repetition maximum (1RM) test value, respectively. RPE and pain levels were measured before exercise and immediately after each set. BFR protocols (i.e., BFR40 and BFR50) presented overall lower RPE response compared to higher-pressure BFR (i.e., BFR70 and BFR80) and HI-RE conditions. For pain levels, low-pressure BFRs (i.e., BFR40 and BFR50), and HI-RE showed lower values than high-pressure BFR protocols (i.e., BFR60, BFR70, and BFR80). In conclusion, low-pressure BFR protocols promote lower RPE and pain compared to high-pressure BFR protocols (between 60% and 80% of occlusion pressure), when total training volume (TTV) is equalized. In addition, HI-RE promotes similar levels of pain, but higher RPE than low-pressure BFR, probably due to the higher TTV.


Diabetology ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 176-189
Author(s):  
Morgan T. Jones ◽  
Elroy J. Aguiar ◽  
Lee J. Winchester

Individuals with type 1 diabetes suffer from impaired angiogenesis, decreased capillarization, and higher fatigability that influence their muscular system beyond the detriments caused by decreased glycemic control. In order to combat exacerbations of these effects, the American Diabetes Association recommends that individuals with type 1 diabetes participate in regular resistance exercise. However, traditional resistance exercise only induces hypertrophy when loads of ≥65% of an individual’s one repetition maximum are used. Combining blood flow restriction with resistance exercise may serve as a more efficient means for stimulating anabolic pathways that result in increased protein synthesis and angiogenesis at lower loads, while also promoting better glycemic control. The purpose of this paper is to provide a review on the literature surrounding the benefits of resistance exercise, specifically for individuals with type 1 diabetes, and postulate potential effects of combining resistance exercise with blood flow restriction in this clinical population.


2017 ◽  
Vol 118 (2) ◽  
pp. 313-320 ◽  
Author(s):  
Kestutis Bunevicius ◽  
Albinas Grunovas ◽  
Tomas Venckunas ◽  
Kristina Poderiene ◽  
Eugenijus Trinkunas ◽  
...  

2015 ◽  
Vol 115 (12) ◽  
pp. 2471-2480 ◽  
Author(s):  
Manoel E. Lixandrão ◽  
Carlos Ugrinowitsch ◽  
Gilberto Laurentino ◽  
Cleiton A. Libardi ◽  
André Y. Aihara ◽  
...  

Author(s):  
William Neil Morley ◽  
Shane Ferth ◽  
Mathew Ian Bergens Debenham ◽  
Matthew Boston ◽  
Geoffrey Alonzo Power ◽  
...  

Despite compelling muscular structure and function changes resulting from blood flow restricted (BFR) resistance training, mechanisms of action remain poorly characterized. Alterations in tissue O2 saturation (TSI%) and metabolites are potential drivers of observed changes, but their relationships with degree of occlusion pressure are unclear. We examined local TSI% and blood lactate (BL) concentration during BFR training to failure using different occlusion pressures on strength, hypertrophy, and muscular endurance over an 8-week training period. Twenty participants (11M:9F) trained 3/wk for 8wk using high pressure (100% resting limb occlusion pressure, LOP, 20%1RM), moderate pressure (50% LOP, 20%1RM), or traditional resistance training (70%1RM). Strength, size, and muscular endurance were measured pre/post training. TSI% and BL were quantified during a training session. Despite overall increases, no group preferentially increased strength, hypertrophy, or muscular endurance (p>0.05). Neither TSI% nor BL concentration differed between groups (p>0.05). Moderate pressure resulted in greater accumulated deoxygenation stress (TSI%*time) (-6352±3081, -3939±1835, -2532±1349 au for moderate pressure, high pressure, and TRT, p=0.018). We demonstrate that BFR training to task-failure elicits similar strength, hypertrophy, and muscular endurance changes to traditional resistance training. Further, varied occlusion pressure does not impact these outcomes, nor elicit changes in TSI% or BL concentrations. Novelty Bullets • Training to task failure with low-load blood flow restriction elicits similar improvements to traditional resistance training, regardless of occlusion pressure. • During blood flow restriction, altering occlusion pressure does not proportionally impact tissue O2 saturation nor blood lactate concentrations


2021 ◽  
Vol 1 (5) ◽  
pp. 263502542110326
Author(s):  
Steven R. Dayton ◽  
Simon J. Padanilam ◽  
Tyler C. Sylvester ◽  
Michael J. Boctor ◽  
Vehniah K. Tjong

Background: Blood flow restriction (BFR) training restricts arterial inflow and venous outflow from the extremity and can produce gains in muscle strength at low loads. Low-load training reduces joint stress and decreases cardiovascular risk when compared with high-load training, thus making BFR an excellent option for many patients requiring rehabilitation. Indications: Blood flow restriction has shown clinical benefit in a variety of patient populations including healthy patients as well as those with osteoarthritis, anterior cruciate ligament reconstruction, polymyositis/dermatomyositis, and Achilles tendon rupture. Technique Description: This video demonstrates BFR training in 3 clinical areas: upper extremity resistance training, lower extremity resistance training, and low-intensity cycling. All applications of BFR first require determination of total occlusion pressure. Upper extremity training requires inflating the tourniquet to 50% of total occlusion pressure, while lower extremity exercises use 80% of total occlusion pressure. Low-load resistance training exercises follow a specific repetition scheme: 30 reps followed by a 30-second rest and then 3 sets of 15 reps with 30-seconds rest between each. During cycle training, 80% total occlusion pressure is used as the patient cycles for 15 minutes without rest. Results: Augmenting low-load resistance training with BFR increases muscle strength when compared with low-load resistance alone. In addition, low-load BFR has demonstrated an increase in muscle mass greater than low-load training alone and equivalent to high-load training absent BFR. A systematic review determined the safety of low-load training with BFR is comparable to traditional high-intensity resistance training. The most common adverse effects include exercise intolerance, discomfort, and dull pain which are also frequent in patients undergoing traditional resistance training. Severe adverse effects including deep vein thrombosis, pulmonary embolism, and rhabdomyolysis are exceedingly rare, less than 0.006% according to a national survey. Patients undergoing BFR rehabilitation experience less perceived exertion and demonstrate decreased pain scores compared with high-load resistance training. Conclusion: Blood flow restriction training is an effective alternative to high-load resistance training for patients requiring musculoskeletal rehabilitation for multiple disease processes as well as in the perioperative setting. Blood flow restriction has been shown to be a safe training modality when managed by properly trained physical therapists and athletic trainers.


Sign in / Sign up

Export Citation Format

Share Document