occlusion pressure
Recently Published Documents


TOTAL DOCUMENTS

337
(FIVE YEARS 35)

H-INDEX

33
(FIVE YEARS 1)

2021 ◽  
pp. 194173812110438
Author(s):  
Stefanos Karanasios ◽  
Charikleia Koutri ◽  
Maria Moutzouri ◽  
Sofia A. Xergia ◽  
Vasiliki Sakellari ◽  
...  

Background: The precise calculation of arterial occlusive pressure is essential to accurately prescribe individualized pressures during blood flow restriction training. Arterial occlusion pressure in the lower limb varies significantly between different body positions while similar reports for the upper limb are lacking. Hypothesis: Body position has a significant effect in upper limb arterial occlusive pressure. Using cuffs with manual pump and a handheld Doppler ultrasound can be a reliable method to determine upper limb arterial blood flow restriction. Study Design: A randomized repeated measures design. Level of Evidence: Level 3. Methods: Forty-two healthy participants (age mean ± SD = 28.1 ± 7.7 years) completed measurements in supine, seated, and standing position by 3 blinded raters. A cuff with a manual pump and a handheld acoustic ultrasound were used. The Wilcoxon signed-rank test with Bonferroni correction was used to analyze differences between body positions. A within-subject coefficient of variation and an intraclass correlation coefficient (ICC) test were used to calculate reproducibility and reliability, respectively. Results: A significantly higher upper limb arterial occlusive pressure was found in seated compared with supine position ( P < 0.031) and in supine compared with standing position ( P < 0.031) in all raters. An ICC of 0.894 (95% CI = 0.824-0.939, P < 0.001) was found in supine, 0.973 (95% CI = 0.955-0.985, P < 0.001) in seated, and 0.984 (95% CI = 0.973-0.991, P < 0.001) in standing position. ICC for test-retest reliability was found 0.90 (95% CI = 0.814-0.946, P < 0.001), 0.873 (95% CI = 0.762-0.93, P < 0.001), and 0.858 (95% CI = 0.737-0.923, P < 0.001) in the supine, seated, and standing position, respectively. Conclusion: Upper limb arterial occlusive pressure was significantly dependent on body position. The method showed excellent interrater reliability and repeatability between different days. Clinical Relevance: Prescription of individualized pressures during blood flow restriction training requires measurement of upper limb arterial occlusive pressure in the appropriate position. The use of occlusion cuffs with a manual pump and a handheld Doppler ultrasound showed excellent reliability; however, the increased measurement error compared with the differences in arterial occlusive pressure between certain positions should be carefully considered for the clinical application of the method. Strength of Recommendations Taxonomy (SORT): B.


2021 ◽  
Vol 1 (5) ◽  
pp. 263502542110326
Author(s):  
Steven R. Dayton ◽  
Simon J. Padanilam ◽  
Tyler C. Sylvester ◽  
Michael J. Boctor ◽  
Vehniah K. Tjong

Background: Blood flow restriction (BFR) training restricts arterial inflow and venous outflow from the extremity and can produce gains in muscle strength at low loads. Low-load training reduces joint stress and decreases cardiovascular risk when compared with high-load training, thus making BFR an excellent option for many patients requiring rehabilitation. Indications: Blood flow restriction has shown clinical benefit in a variety of patient populations including healthy patients as well as those with osteoarthritis, anterior cruciate ligament reconstruction, polymyositis/dermatomyositis, and Achilles tendon rupture. Technique Description: This video demonstrates BFR training in 3 clinical areas: upper extremity resistance training, lower extremity resistance training, and low-intensity cycling. All applications of BFR first require determination of total occlusion pressure. Upper extremity training requires inflating the tourniquet to 50% of total occlusion pressure, while lower extremity exercises use 80% of total occlusion pressure. Low-load resistance training exercises follow a specific repetition scheme: 30 reps followed by a 30-second rest and then 3 sets of 15 reps with 30-seconds rest between each. During cycle training, 80% total occlusion pressure is used as the patient cycles for 15 minutes without rest. Results: Augmenting low-load resistance training with BFR increases muscle strength when compared with low-load resistance alone. In addition, low-load BFR has demonstrated an increase in muscle mass greater than low-load training alone and equivalent to high-load training absent BFR. A systematic review determined the safety of low-load training with BFR is comparable to traditional high-intensity resistance training. The most common adverse effects include exercise intolerance, discomfort, and dull pain which are also frequent in patients undergoing traditional resistance training. Severe adverse effects including deep vein thrombosis, pulmonary embolism, and rhabdomyolysis are exceedingly rare, less than 0.006% according to a national survey. Patients undergoing BFR rehabilitation experience less perceived exertion and demonstrate decreased pain scores compared with high-load resistance training. Conclusion: Blood flow restriction training is an effective alternative to high-load resistance training for patients requiring musculoskeletal rehabilitation for multiple disease processes as well as in the perioperative setting. Blood flow restriction has been shown to be a safe training modality when managed by properly trained physical therapists and athletic trainers.


Medicina ◽  
2021 ◽  
Vol 57 (9) ◽  
pp. 863
Author(s):  
Nicole D. Tafuna’i ◽  
Iain Hunter ◽  
Aaron W. Johnson ◽  
Gilbert W. Fellingham ◽  
Pat R. Vehrs

Background and Objectives: Blood flow restriction during low-load exercise stimulates similar muscle adaptations to those normally observed with higher loads. Differences in the arterial occlusion pressure (AOP) between limbs and between sexes are unclear. We compared the AOP of the superficial femoral artery in the dominant and non-dominant legs, and the relationship between blood flow and occlusion pressure in 35 (16 males, 19 females) young adults. Materials and Methods: Using ultrasound, we measured the AOP of the superficial femoral artery in both legs. Blood flow at occlusion pressures ranging from 0% to 100% of the AOP was measured in the dominant leg. Results: There was a significant difference in the AOP between males and females in the dominant (230 ± 41 vs. 191 ± 27 mmHg; p = 0.002) and non-dominant (209 ± 37 vs. 178 ± 21 mmHg; p = 0.004) legs, and between the dominant and non-dominant legs in males (230 ± 41 vs. 209 ± 37 mmHg; p = 0.009) but not females (191 ± 27 vs. 178 ± 21 mmHg; p = 0.053), respectively. Leg circumference was the most influential independent predictor of the AOP. There was a linear relationship between blood flow (expressed as a percentage of unoccluded blood flow) and occlusion pressure (expressed as a percentage of AOP). Conclusions: Arterial occlusion pressure is not always greater in the dominant leg or the larger leg. Practitioners should measure AOP in both limbs to determine if occlusion pressures used during exercise should be limb specific. Occlusion pressures used during blood flow restriction exercise should be chosen carefully.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Luke Hughes ◽  
James McEwen

Abstract Background Development of automatic, pneumatic tourniquet technology and use of personalised tourniquet pressures has improved the safety and accuracy of surgical tourniquet systems. Personalisation of tourniquet pressure requires accurate measurement of limb occlusion pressure (LOP), which can be measured automatically through two different methods. The ‘embedded LOP’ method measures LOP using a dual-purpose tourniquet cuff acting as both patient sensor and pneumatic effector. The ‘distal LOP’ method measures LOP using a distal sensor applied to the patient’s finger or toe of the operating limb, using photoplethysmography to detect volumetric changes in peripheral blood circulation. The distal LOP method has been used clinically for many years; the embedded LOP method was developed recently with several advantages over the distal LOP method. While both methods have clinically acceptable accuracy in comparison to LOP measured using the manual Doppler ultrasound method, these two automatic methods have not been directly compared. The purpose of this study is to investigate if the embedded and distal methods of LOP measurement have clinically acceptable agreement. The differences in pairs of LOP measurement in the upper and lower limbs of 81 healthy individuals were compared using modified Bland and Altman analysis. In surgery, it is common for cuff pressure to deviate from the pressure setpoint due to limb manipulation. Surgical tourniquet systems utilise a ± 15 mmHg pressure alarm window, whereby if the cuff pressure deviates from the pressure setpoint by > 15 mmHg, an audiovisual alarm is triggered. Therefore, if the difference (bias) ± SE, 95% CI of the bias and SD of differences ± SE in LOP measurement between the embedded and distal methods were all within ±15 mmHg, this would demonstrate that the two methods have clinically acceptable agreement. Results LOP measurement using the embedded LOP method was − 0.81 ± 0.75 mmHg (bias ± standard error) lower than the distal LOP method. The 95% confidence interval of the bias was − 2.29 to 0.66 mmHg. The standard deviation of the differences ± standard error was 10.35 ± 0.49 mmHg. These results show that the embedded and distal methods of LOP measurement demonstrate clinically acceptable agreement. Conclusions The findings of this study demonstrate clinically acceptable agreement between the embedded and distal methods of LOP measurement. The findings support the use of the embedded LOP method of automatic LOP measurement using dual-purpose tourniquet cuffs to enable accurate, effective and simple prescription of personalised tourniquet cuff pressures in a clinical setting.


Author(s):  
William Neil Morley ◽  
Shane Ferth ◽  
Mathew Ian Bergens Debenham ◽  
Matthew Boston ◽  
Geoffrey Alonzo Power ◽  
...  

Despite compelling muscular structure and function changes resulting from blood flow restricted (BFR) resistance training, mechanisms of action remain poorly characterized. Alterations in tissue O2 saturation (TSI%) and metabolites are potential drivers of observed changes, but their relationships with degree of occlusion pressure are unclear. We examined local TSI% and blood lactate (BL) concentration during BFR training to failure using different occlusion pressures on strength, hypertrophy, and muscular endurance over an 8-week training period. Twenty participants (11M:9F) trained 3/wk for 8wk using high pressure (100% resting limb occlusion pressure, LOP, 20%1RM), moderate pressure (50% LOP, 20%1RM), or traditional resistance training (70%1RM). Strength, size, and muscular endurance were measured pre/post training. TSI% and BL were quantified during a training session. Despite overall increases, no group preferentially increased strength, hypertrophy, or muscular endurance (p>0.05). Neither TSI% nor BL concentration differed between groups (p>0.05). Moderate pressure resulted in greater accumulated deoxygenation stress (TSI%*time) (-6352±3081, -3939±1835, -2532±1349 au for moderate pressure, high pressure, and TRT, p=0.018). We demonstrate that BFR training to task-failure elicits similar strength, hypertrophy, and muscular endurance changes to traditional resistance training. Further, varied occlusion pressure does not impact these outcomes, nor elicit changes in TSI% or BL concentrations. Novelty Bullets • Training to task failure with low-load blood flow restriction elicits similar improvements to traditional resistance training, regardless of occlusion pressure. • During blood flow restriction, altering occlusion pressure does not proportionally impact tissue O2 saturation nor blood lactate concentrations


2021 ◽  
pp. 1-10
Author(s):  
Waleed S. Mahmoud ◽  
Ahmed Osailan ◽  
Ahmed S. Ahmed ◽  
Ragab K. Elnaggar ◽  
Nadia L. Radwan

BACKGROUND: Knee osteoarthritis (KOA) is one of the most common chronic diseases impacting millions of elderly people. OBJECTIVES: The study compared the effects of two intensities of partial blood flow restriction (BFR) with low-intensity resistance training on quadriceps strength and cross-sectional area (CSA), and pain in people with knee osteoarthritis (PwKOA). METHODS: Thirty-five PwKOA, aged 50–65, participated. Quadriceps CSA was measured by ultrasonography, quadriceps strength – by isokinetic dynamometry and pain by VAS. These outcome variables were obtained at the beginning of the study and re-evaluated eight weeks after the intervention. RESULTS: An interaction effect was present for quadriceps CSA (P= 0.042) and quadriceps strength (P= 0.006), showing that using 70% of total occlusion pressure with 30% 1RM had a more significant effect. Knee pain improved significantly through the main effect of BFR (P< 0.001), and low-intensity resistance training (P= 0.011). Pain improved more at 70% of total occlusion pressure, with 30% of 1RM (2.5 ± 1.06) than 50% total occlusion pressure with 10% of 1RM (5.77 ± 1.46). CONCLUSION: A combination of 70% of total occlusion pressure with 30% 1RM could be beneficial in PwKOA in improving pain, and increasing the quadriceps strength. The changes in the quadriceps strength could be a predictor for knee pain.


2021 ◽  
pp. 194173812199541
Author(s):  
Mikhail Santos Cerqueira ◽  
Daniel Kovacs ◽  
Ingrid Martins de França ◽  
Rafael Pereira ◽  
Sinval Bezerra da Nobrega Neto ◽  
...  

Background: The effects of ischemic preconditioning (IPC) versus a deceptive sham protocol on indirect markers of exercise-induced muscle damage (EIMD) after the application of individualized occlusion pressure were examined. The goal of using a sham protocol is to control for the potential effect of placebo. Hypothesis: IPC would surpass the sham protocol in protecting against EIMD. Study Design: A randomized, double-blinded, clinical trial. Level of Evidence: Level 1. Methods: Thirty healthy young men were randomly assigned to an eccentric exercise for the knee extensor muscles preceded by IPC (4 × 5 minutes of individualized total occlusion pressure) or sham protocol (4 × 5 minutes using 20 mm Hg). Maximal voluntary isometric torque (MVIT), rate of torque development, muscle soreness, pressure pain threshold, knee range of motion, thigh girth, and creatine kinase (CK) activity were assessed before IPC or sham protocol and up to 72 hours after the eccentric EIMD. Affective valence and perceived exertion were also evaluated. Results: MVIT decreased 17.1% in the IPC and 18.1% in the sham groups, with no differences between groups. Differences from baseline were observed in the sham group for muscle soreness at 48 hours ( P < 0.001) and 72 hours ( P = 0.02), and for CK activity at 72 hours ( P = 0.04). Muscle soreness was reduced in the IPC group at 48 hours compared with the sham group (∆ = 15.8 mm; P = 0.008) but without achieving the minimal clinically important difference. IPC induced a smaller perceived exertion than the sham protocol (∆ = 1.1 a.u.; P = 0.02). The remaining outcomes were not statistically different in both groups. Conclusion: IPC does not surpass the sham protocol to protect against mild EIMD of the knee extensors muscles. Clinical Relevance: Although IPC is a noninvasive, low-cost, and easy-to-administer intervention, the IPC effects can, in part, be explained by the placebo effect. In addition, individualized IPC promotes attenuation in perceived exertion during eccentric exercise.


Sign in / Sign up

Export Citation Format

Share Document