scholarly journals Bubble size and frequency in gas fluidized beds.

1988 ◽  
Vol 21 (2) ◽  
pp. 171-178 ◽  
Author(s):  
JEONG H. CHOI ◽  
JAE E. SON ◽  
SANG D. KIM
2002 ◽  
Vol 455 ◽  
pp. 103-127 ◽  
Author(s):  
KHURRAM RAHMAN ◽  
CHARLES S. CAMPBELL

The particle pressure is the surface force in a particle/fluid mixture that is exerted solely by the particle phase. This paper presents measurements of the particle pressure on the faces of a two-dimensional gas-fluidized bed and gives insight into the mechanisms by which bubbles generate particle pressure. The particle pressure is measured by a specially designed ‘particle pressure transducer’. The results show that, around single bubbles, the most significant particle pressures are generated below and to the sides of the bubble and that these particle pressures steadily increase and reach a maximum value at bubble eruption. The dominant mechanism appears to be defluidization of material in the particle phase that results from the bubble attracting fluidizing gas away from the surrounding material; the surrounding material is no longer supported by the gas flow and can only be supported across interparticle contacts which results in the observed particle pressures. The contribution of particle motion to particle pressure generation is insignificant.The magnitude of the particle pressure below a single bubble in a gas-fluidized bed depends on the bubble size and the density of the solid particles, as might be expected as the amount of gas attracted by the bubble should increase with bubble size and because the weight of defluidized material depends on the density of the solid material. A simple scaling of these quantities is suggested that is otherwise independent of the bed material.In freely bubbling gas-fluidized beds the particle pressures generated behave differently. Overall they are smaller in magnitude and reach their maximum value soon after the bubble passes instead of at eruption. In this situation, it appears that the bubbles interact with one another in such a way that the de uidization effect below a leading bubble is largely counteracted by refluidizing gas exiting the roof of trailing bubbles.


Author(s):  
Luca Cammarata ◽  
Paola Lettieri ◽  
Giorgio D. M. Micale ◽  
Derek Colman

This paper reports on CFD simulations of freely bubbling gas fluidized beds using CFX-4, a commercial code developed by CFX Ltd. (formerly AEA Technology). Two Eulerian-Eulerian modelling approaches, the granular kinetic model and the particle-bed model (Gibilaro, 2001), have been investigated. The particle bed model has been recently implemented in CFX-4 for 2D simulations and a numerical procedure was developed to allow for a tight control of the fluid-bed voidage at maximum packing during the simulations, see Lettieri et al. (2003). The work has now been extended to 3D simulations and qualitative and quantitative results are presented in this paper for both the 2D and 3D simulations of the bubbling fluidization of a Geldart Group B material. Results on bed expansion, bubble size and bubble hold-up are reported. In particular, simulated bubble size is compared with predictions given by the Darton et al. (1977) equation at different bed heights. The paper shows that the bubble size predicted by both the granular kinetic model and the particle-bed model is in good agreement with the Darton's equation.


1991 ◽  
Vol 227 ◽  
pp. 495-508 ◽  
Author(s):  
Charles S. Campbell ◽  
David G. Wang

The particle pressure is the surface force that is exerted due to the motion of particles and their interactions. This paper describes measurements of the particle pressure exerted on the sidewall of a gas-fluidized bed. As long as the bed remains in a packed state, the particle pressure decreases with increasing gas velocity as progressively more of the bed is supported by fluid forces. It appropriately reaches a minimum fluidization and then begins to rise again when the bed is fluidized, reflecting the agitation of the bed by bubbles. In this fully fluidized region, the particle pressure scales with the particle density and the bubble size.


1998 ◽  
Vol 37 (6) ◽  
pp. 2559-2564 ◽  
Author(s):  
Jeong-Hoo Choi ◽  
Jae-Ek Son ◽  
Sang-Done Kim

1987 ◽  
Vol 52 (5) ◽  
pp. 1178-1185
Author(s):  
Miloslav Hartman ◽  
Václav Veselý ◽  
Otakar Trnka ◽  
Karel Svoboda

A theory of bubble growth due to coalescence in gas fluidized beds was employed to predict the bed expansion. Using the semi-empirical correlation of bubble size by Mori and Wen, an equation for the height of expanded beds has been developed and verified by experiment. Predictions of the proposed formula were compared with the predictions of recent bed expansion correlations.


2010 ◽  
Vol 65 (16) ◽  
pp. 4782-4791 ◽  
Author(s):  
A. Busciglio ◽  
G. Vella ◽  
G. Micale ◽  
L. Rizzuti

1994 ◽  
Vol 278 ◽  
pp. 63-81 ◽  
Author(s):  
G. K. Batchelor ◽  
J. M. Nitsche

It is a significant feature of most gas-fluidized beds that they contain rising ‘bubbles’ of almost clear gas. The purpose of this paper is to account plausibly for this remarkable property first by supposing that primary and secondary instabilities of the fluidized bed generate compact regions of above-average or below-average particle concentration, and second by invoking a mechanism for the expulsion of particles from a buoyant compact blob of smaller particle concentration. We postulate that the rising of such an incipient bubble generates a toroidal circulation of the gas in the bubble, roughly like that in a drop of liquid rising through a second liquid of larger density, and that particles in the blob carried round by the fluid move on trajectories which ultimately cross the bubble boundary. Numerical calculations of particle trajectories for practical values of the relevant parameters show that a large percentage of particles, of such small concentration that they move independently, are expelled from a bubble in the time taken by it to rise through a distance of several bubble diameters.Similar calculations for a liquid-fluidized bed show that the expulsion mechanism is much weaker, as a consequence of the larger density and viscosity of a liquid, which is consistent with the absence of observations of relatively empty bubbles in liquid-fluidized beds.It is found to be possible, with the help of the Richardson-Zaki correlation, to adjust the results of these calculations so as to allow approximately for the effect of interaction of particles in a bubble in either a gas- or a liquid-fluidized bed. The interaction of particles at volume fractions of 20 or 30 % lengthens the expulsion times, although without changing the qualitative conclusions.


Sign in / Sign up

Export Citation Format

Share Document