Particle pressures in gas-fluidized beds

1991 ◽  
Vol 227 ◽  
pp. 495-508 ◽  
Author(s):  
Charles S. Campbell ◽  
David G. Wang

The particle pressure is the surface force that is exerted due to the motion of particles and their interactions. This paper describes measurements of the particle pressure exerted on the sidewall of a gas-fluidized bed. As long as the bed remains in a packed state, the particle pressure decreases with increasing gas velocity as progressively more of the bed is supported by fluid forces. It appropriately reaches a minimum fluidization and then begins to rise again when the bed is fluidized, reflecting the agitation of the bed by bubbles. In this fully fluidized region, the particle pressure scales with the particle density and the bubble size.

2002 ◽  
Vol 455 ◽  
pp. 103-127 ◽  
Author(s):  
KHURRAM RAHMAN ◽  
CHARLES S. CAMPBELL

The particle pressure is the surface force in a particle/fluid mixture that is exerted solely by the particle phase. This paper presents measurements of the particle pressure on the faces of a two-dimensional gas-fluidized bed and gives insight into the mechanisms by which bubbles generate particle pressure. The particle pressure is measured by a specially designed ‘particle pressure transducer’. The results show that, around single bubbles, the most significant particle pressures are generated below and to the sides of the bubble and that these particle pressures steadily increase and reach a maximum value at bubble eruption. The dominant mechanism appears to be defluidization of material in the particle phase that results from the bubble attracting fluidizing gas away from the surrounding material; the surrounding material is no longer supported by the gas flow and can only be supported across interparticle contacts which results in the observed particle pressures. The contribution of particle motion to particle pressure generation is insignificant.The magnitude of the particle pressure below a single bubble in a gas-fluidized bed depends on the bubble size and the density of the solid particles, as might be expected as the amount of gas attracted by the bubble should increase with bubble size and because the weight of defluidized material depends on the density of the solid material. A simple scaling of these quantities is suggested that is otherwise independent of the bed material.In freely bubbling gas-fluidized beds the particle pressures generated behave differently. Overall they are smaller in magnitude and reach their maximum value soon after the bubble passes instead of at eruption. In this situation, it appears that the bubbles interact with one another in such a way that the de uidization effect below a leading bubble is largely counteracted by refluidizing gas exiting the roof of trailing bubbles.


POROS ◽  
2018 ◽  
Vol 16 (1) ◽  
Author(s):  
Asyari Daryus Daryus

The gas fluidization velocity or superficial gas velocity entering the fluidized bed will affect the fluidization in fluidized bed. If the superficial velocity is below the minimum fluidization velocity then there is no fluidization, and if it is more than it should be then the fluidization characteristic will be different. To obtain the effect of gas fluidization velocity to fluidization characteristics, it had been conducted the research on lab scale fluidized bed using CFD simulation method validated with the experiment data. The simulations used Gidaspow model for drag force and k-ε model for turbulent flow. From the experiments obtained that the minimum fluidization velocity was 0.4 m/s and the pressure drop was around 700 Pa. The simulation results for pressure drop across the bed were close to the experiment data for the gas fluidization velocity equal and bigger than the minimum fluidization velocity. For the velocity below the minimum fluidization velocity, there was the big differences between the simulation results and the experiment, so the simulation results cannot be used. For the fluidization velocity of 0.4 m/s and 0.45 m/s, fluidized bed showed the bubbling phenomena, and the higher velocity showed the bigger bubble. For the fluidization velocity of 0.50 m/s to 0.70 m/s, the fluidized bed showed the turbulent regime. In this regime, the bubble was breaking instead of growing and there was no clear bed surface observed. The simulation result for particle density showed that if the gas velocity was higher, the density of particles at the base of bed was decreasing since many of the particles was moving upwards. The particle density was lower in this regime than that of bubbling regime.


1994 ◽  
Vol 278 ◽  
pp. 63-81 ◽  
Author(s):  
G. K. Batchelor ◽  
J. M. Nitsche

It is a significant feature of most gas-fluidized beds that they contain rising ‘bubbles’ of almost clear gas. The purpose of this paper is to account plausibly for this remarkable property first by supposing that primary and secondary instabilities of the fluidized bed generate compact regions of above-average or below-average particle concentration, and second by invoking a mechanism for the expulsion of particles from a buoyant compact blob of smaller particle concentration. We postulate that the rising of such an incipient bubble generates a toroidal circulation of the gas in the bubble, roughly like that in a drop of liquid rising through a second liquid of larger density, and that particles in the blob carried round by the fluid move on trajectories which ultimately cross the bubble boundary. Numerical calculations of particle trajectories for practical values of the relevant parameters show that a large percentage of particles, of such small concentration that they move independently, are expelled from a bubble in the time taken by it to rise through a distance of several bubble diameters.Similar calculations for a liquid-fluidized bed show that the expulsion mechanism is much weaker, as a consequence of the larger density and viscosity of a liquid, which is consistent with the absence of observations of relatively empty bubbles in liquid-fluidized beds.It is found to be possible, with the help of the Richardson-Zaki correlation, to adjust the results of these calculations so as to allow approximately for the effect of interaction of particles in a bubble in either a gas- or a liquid-fluidized bed. The interaction of particles at volume fractions of 20 or 30 % lengthens the expulsion times, although without changing the qualitative conclusions.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 61
Author(s):  
Yakun Tian ◽  
Shulei Song ◽  
Xuan Xu ◽  
Xinyu Wei ◽  
Shanwen Yan ◽  
...  

The bed pressure drop, minimum fluidized gas velocity, bed density, and bed expansion rate are important parameters characterizing the fluidization characteristics of gas-solid fluidized beds. By analyzing these parameters, the advantages and disadvantages of the fluidization state can be known. In this study, experiments were conducted to study the fluidization characteristics of a gas-solid magnetically fluidized bed for microfine particles by changing the magnetic field strength, magnetic field addition sequence, and static bed height. The experimental results show that when the magnetic field strength increased from 0 KA/m to 5 KA/m, the minimum fluidized gas velocity of particles increased from 4.42 cm/s to 10.32 cm/s, while the bed pressure drop first increased and then decreased. When the magnetic field strength is less than 3.4 KA/m, the microfine particles in the bed are mainly acted on by the airflow; while when the magnetic field strength is greater than 3.4 KA/m, the microfine particles are mainly dominated by the magnetic field. The magnetic field addition sequence affects the fluidization quality of microfine particles. The fluidized bed with ‘adding magnetic field first’ shows a more stable fluidization state than ‘adding magnetic field later’. Increasing of the static bed height reduces the bed expansion rate. The bed expansion rate is up to 112.5% at a static bed height of h0 = 40 mm and H = 5 KA/m. This will broaden the range of density regulation of a single magnetic particle and lay the advantage of gas-solid magnetically fluidized bed for microfine particles in the field of separation of fine coal.


Author(s):  
Weiling Li ◽  
Chuanwen Zhao ◽  
Ping Lu

Abstract The computational fluid dynamics – bubble population balance model (CFD–BPBM) was employed to predict the hydrodynamic characteristics of a gas–liquid–solid bubble column. A 3D time dependent numerical study was performed and the bubble size distributions at the conditions of different superficial gas velocity (0.089 m/s–0.22 m/s), solid volume fraction (0.03–0.30) and particle density (2500 kg/m3–4800 kg/m3) in the three–phase system were investigated, and the simulation results were compared with the experimental results. The bubble diameters ranging from 1 mm to 64 mm were divided into ten classes. The predicted pressure changing with the bed height had a good agreemeet with the experimental result. The bubble number density predicted decreased when the bubble size increased at each superficial gas velocity, and the bubble coalescence rate became greater than the breakup rate when Ug shifted from 0.089 m/s to 0.16 m/s. The bubble interaction was similar at 0.16 m/s and 0.22 m/s both at particle size dp = 75 μm and 150 μm. The bubble size corresponding to the maximum of the bubble volume fraction increased as Ug increased. The particles can make the bubble break up and coalesce simultaneously when the solid volume fraction was larger than 0.20, and therefore the particles had a contribution to both of the bubble coalescence and breakup in the bubble coalescence regime (Ug = 0.16 m/s). The effect of the particle density was similar with that of the solid volume fraction. Increasing the particle density can enhance the breakup rate of the large bubbles.


Author(s):  
Srinivasa Rao Venkata Naga Kaza

Gas flow in a gas–solid fluidized bed is characterized by the predominance of bubbles. When gas flow is more than the minimum fluidization velocity, the top of the fluidized bed may fluctuate vigorously leading to unstable operation. Bed fluctuation and fluidization quality are interrelated. The quality of fluidization can largely be improved by introducing baffles in bubbling and turbulent fluidized beds. In the present work three baffle geometries, i.e., circular, triangular and square are used to determine different hydrodynamic parameters such as minimum fluidization velocity, bed expansion, pressure drop across the bed, fluctuation ratio, expansion ratio, etc. in a bubbling fluidized bed. A new parameter blockage ratio is introduced to analyze the behaviour of baffled fluidized beds. It is found from the current experimental studies that the blockage ratio mainly influences the hydrodynamics of the bed rather than the shape of the baffle.


1988 ◽  
Vol 21 (2) ◽  
pp. 171-178 ◽  
Author(s):  
JEONG H. CHOI ◽  
JAE E. SON ◽  
SANG D. KIM

2018 ◽  
Vol 9 (1) ◽  
pp. 67
Author(s):  
Chenxi Bai ◽  
Yao Xiao ◽  
Ruifeng Peng ◽  
John Grace ◽  
Yumin Chen

This study experimentally investigates the effects of gas extraction/addition, via multiple vertical membrane panels, on the hydrodynamics in different regions of a pilot-scale gas fluidized bed membrane reactor (FBMR), based on differential pressure signals measured at different vertical bed sections at high temperature. In a bed section where membrane panels were installed and activated, the extraction of gas caused the average bubble size to increase, but decreased the number of small- and medium-sized bubbles. This effect of gas extraction penetrated into bed sections above the active membrane panel, but attenuated with increasing distance away from the extraction location. The attenuation rate was much faster in FBMR with lower bed voidage, mainly due to the large decrease of the drag force exerted by gas extraction on fluidizing gas in a denser bed. With the same inlet gas velocity, gas addition favored the growth of bubbles, especially in the upper bed sections compared with operation without gas permeation. The increase of the effective fluidizing velocity was the major reason for the increase of the bubble size during gas addition. These findings preliminarily suggest that membrane units should not be installed in or below fast-reacting zones in a scale-up FBMR, and operation with a lower bed voidage is preferable to avoid the formation of large bubbles enhanced by gas extraction.


Author(s):  
Alberto Di Renzo ◽  
Francesco P. Di Maio ◽  
Vincenzino Vivacqua

In the present paper the segregating behaviour of solids of different size and density in gas-fluidized beds is studied. In particular, the attention is focussed on pairs composed of a bigger/less dense species and a smaller/denser species. Typical industrial examples of such combinations are encountered in fluidized beds of biomass/sand mixtures. Their behaviour is not easily predictable, as the segregation tendency promoted by the difference in density is counteracted by the difference in size. While typically the denser component is expected to appear predominantly at the bottom of the fluidized bed, experiments on mixtures exhibiting the reverse behaviour have been reported (e.g. Chiba et al., 1980).A simple model to predict the segregation direction of the components, i.e. which species will segregate to the top of the bed (the flotsam), depending upon their difference in properties (size, density) and the mixture composition, is discussed. The predicted behaviour is compared with experimental data available in the literature and agreement is found for the majority of them. For one mixture, experiments are conducted as well as computational simulations based on the combined Discrete Element Method and Computational Fluid Dynamics (DEM-CFD) approach. This allows investigating how an initially mixed bed upon suspension evolves as a result of the segregation prevalence in the bed.


Sign in / Sign up

Export Citation Format

Share Document