Dehydrogenation of Pure Cyclohexane in the Membrane Reactor and Prediction of Conversion by Pseudo Equilibrium Model.

1998 ◽  
Vol 31 (4) ◽  
pp. 596-603 ◽  
Author(s):  
Takao Kokugan ◽  
Azis Trianto ◽  
Hiromichi Takeda
2010 ◽  
Author(s):  
Christopher K. Adair ◽  
Suzanne T. Bell ◽  
Brian J. Marentette ◽  
David Fisher ◽  
David Gerding

Author(s):  
Jamal Othman ◽  
Yaghoob Jafari

Malaysia is contemplating removal of most of her subsidy support measures including subsidies on cooking oil which is largely palm oil based. This paper aims to examine the effects of cooking oil subsidy removals on the competitiveness of the oil palm subsector and related markets. This is done by developing and applying a comparative static, multi-commodity, partial equilibrium model with multi-stages of production function for the Malaysian perennial crops subsector which explicitly links different stages of production, primary and intermediate input markets, trade, and policy linkages. Results partly suggest that export of cooking oil will increase by 0.2 per cent due to a 10 per cent cooking oil subsidy reduction, while domestic output of cooking oil may eventually see a net decline of 1.97 per cent. The results clearly point out that the effect of reducing cooking oil subsidies is relatively small at the upstream levels and therefore it only induces minute effects on factor markets. Consequently, the market for other agricultural crops is projected to change very marginally.   Keywords: Multicomodity, comparative statics, partial equilibrium model, output supply-factor markets linkages, effects of cooking oil subsidy removals.


2020 ◽  
Author(s):  
Dae Hyup Sohn

<p>The reliability evaluation of the predicted binding constants in numerous models is also a challenge for supramolecular host-guest chemistry. Here, I briefly formulate binding isotherm with the derivation of the multivalent equilibrium model for the chemist who wants to determine the binding constants of their compounds. This article gives an in-depth understanding of the stoichiometry of binding equilibrium to take divalent binding equilibria bearing two structurally identical binding sites as an example. The stoichiometry of binding equilibrium is affected by (1) the cooperativity of complex, (2) the concentration of titration media, and (3) the equivalents of guests. The simulations were conducted with simple Python codes.</p>


Sign in / Sign up

Export Citation Format

Share Document