scholarly journals Correlation between flash points and chemical structures of organic compounds using principal component analysis.

1990 ◽  
Vol 16 (6) ◽  
pp. 1224-1233 ◽  
Author(s):  
Takahiro Suzuki ◽  
Kazuhisa Ohtaguchi ◽  
Kozo Koide
2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Jiapei Xi ◽  
Ping Zhan ◽  
Honglei Tian ◽  
Peng Wang

Peppertree prickly ash, Amomum tsao-ko, cumin, and ginger have long been used in Asian countries to modify the flavor and to partially neutralize any unpleasant odors present in roast lamb. The purpose of this study was to evaluate the change in the amount of volatile components present in roast lamb compared to meat added with peppertree prickly ash, Amomum tsao-ko, cumin, and ginger. Principal component analysis was carried out on the 27 initially selected from 88 volatile substances, and 15 substances with a projection of more than 0.25 in the load matrix were used as indicators to study the different contents in roasted mutton and lamb prepared by adding peppertree prickly ash, Amomum tsao-ko, cumin, and ginger. The types of VOCs (volatile organic compounds) detected in roast meat without adding spices were the least. Roast meat with the addition of cumin leads to the strongest content of aldehydes, followed by the addition of Amomum tsao-ko. Additionally, roast meat with the addition of Chinese prickly ash leads to the strongest content of terpenes, followed by the addition of ginger. Moreover, with the addition of spices, the content of volatiles responsible for the presence of a mutton odor (such as hexanal, heptanal, pentanal, (z)-4-decenal, benzaldehyde, p-propyl-anisole, and dimethyl ether) was not significantly decreased, and in fact some volatiles increased in amount such as pentanal, hexanal, octanal, and (z)-4-decenal. In conclusion, the effect of addition of spices on the volatile profile of roasted mutton and lamb can be attributed to the generation of flavor volatiles mainly derived from raw spices’ hot action, with few additional volatiles formed during boiling.


2018 ◽  
Author(s):  
Travis W. Tokarek ◽  
Charles A. Odame-Ankrah ◽  
Jennifer A. Huo ◽  
Robert McLaren ◽  
Alex K. Y. Lee ◽  
...  

Abstract. In this paper, measurements of air pollutants made at a ground site near Fort McKay in the Athabasca oil sands region as part of a multi-platform campaign in the summer of 2013 are presented. The observations included measurements of selected volatile organic compounds (VOCs) by a gas chromatograph &ndash ion trap mass spectrometer (GC-ITMS). This instrument observed a large, analytically unresolved hydrocarbon peak (with retention index between 1100 and 1700) associated with intermediate volatility organic compounds (IVOCs). However, the activities or processes that contribute to the release of these IVOCs in the oil sands region remain unclear. Principal component analysis (PCA) with Varimax rotation was applied to elucidate major source types impacting the sampling site in the summer of 2013. The analysis included 28 variables, including concentrations of total odd nitrogen (NOy), carbon dioxide (CO2), methane (CH4), ammonia (NH3), carbon monoxide (CO), sulfur dioxide (SO2), total reduced sulfur compounds (TRS), speciated monoterpenes (including α- and β-pinene and limonene), particle volume calculated from measured size distributions of particles less than 10 µm and 1 µm in diameter (PM10-1 and PM1), particle-surface bound polycyclic aromatic hydrocarbons (pPAH), and aerosol mass spectrometer composition measurements, including refractory black carbon (rBC) and organic aerosol components. The PCA was complemented by bivariate polar plots showing the joint wind speed and direction dependence of air pollutant concentrations to illustrate the spatial distribution of sources in the area. Using the 95 % cumulative percentage of variance criterion, ten components were identified and categorized by source type. These included emissions by wet tailings ponds, vegetation, open pit mining operations, upgrader facilities, and surface dust. Three components correlated with IVOCs, with the largest associated with surface mining and is likely caused by the unearthing and processing of raw bitumen.


2018 ◽  
Vol 18 (24) ◽  
pp. 17819-17841 ◽  
Author(s):  
Travis W. Tokarek ◽  
Charles A. Odame-Ankrah ◽  
Jennifer A. Huo ◽  
Robert McLaren ◽  
Alex K. Y. Lee ◽  
...  

Abstract. In this paper, measurements of air pollutants made at a ground site near Fort McKay in the Athabasca oil sands region as part of a multi-platform campaign in the summer of 2013 are presented. The observations included measurements of selected volatile organic compounds (VOCs) by a gas chromatograph–ion trap mass spectrometer (GC-ITMS). This instrument observed a large, analytically unresolved hydrocarbon peak (with a retention index between 1100 and 1700) associated with intermediate-volatility organic compounds (IVOCs). However, the activities or processes that contribute to the release of these IVOCs in the oil sands region remain unclear. Principal component analysis (PCA) with varimax rotation was applied to elucidate major source types impacting the sampling site in the summer of 2013. The analysis included 28 variables, including concentrations of total odd nitrogen (NOy), carbon dioxide (CO2), methane (CH4), ammonia (NH3), carbon monoxide (CO), sulfur dioxide (SO2), total reduced-sulfur compounds (TRSs), speciated monoterpenes (including α- and β-pinene and limonene), particle volume calculated from measured size distributions of particles less than 10 and 1 µm in diameter (PM10−1 and PM1), particle-surface-bound polycyclic aromatic hydrocarbons (pPAHs), and aerosol mass spectrometer composition measurements, including refractory black carbon (rBC) and organic aerosol components. The PCA was complemented by bivariate polar plots showing the joint wind speed and direction dependence of air pollutant concentrations to illustrate the spatial distribution of sources in the area. Using the 95 % cumulative percentage of variance criterion, 10 components were identified and categorized by source type. These included emissions by wet tailing ponds, vegetation, open pit mining operations, upgrader facilities, and surface dust. Three components correlated with IVOCs, with the largest associated with surface mining and likely caused by the unearthing and processing of raw bitumen.


Sign in / Sign up

Export Citation Format

Share Document