humid air
Recently Published Documents


TOTAL DOCUMENTS

920
(FIVE YEARS 173)

H-INDEX

48
(FIVE YEARS 9)

2022 ◽  
Vol 429 ◽  
pp. 132304
Author(s):  
Luqman Hakim Mohd Azmi ◽  
Pavani Cherukupally ◽  
Elwin Hunter-Sellars ◽  
Bradley P. Ladewig ◽  
Daryl R. Williams
Keyword(s):  

2022 ◽  
Vol 23 (2) ◽  
pp. 601
Author(s):  
Olga I. Yablonskaya ◽  
Vladimir L. Voeikov ◽  
Kirill N. Novikov ◽  
Ekaterina V. Buravleva ◽  
Valeriy A. Menshov ◽  
...  

Water vapor absorbs well in the infra-red region of the electromagnetic spectrum. Absorption of radiant energy by water or water droplets leads to formation of exclusion zone water that possesses peculiar physico-chemical properties. In the course of this study, normally functioning and damaged alkaline phosphatase, horseradish peroxidase and catalase were treated with humid air irradiated with infrared light with a wavelength in the range of 1270 nm and referred to as coherent humidity (CoHu). One-minute long treatment with CoHu helped to partially protect enzymes from heat inactivation, mixed function oxidation, and loss of activity due to partial unfolding. Authors suggest that a possible mechanism underlying the observed effects involves altering the physicochemical properties of aqueous media while treatment of the objects with CoHu where CoHu acts as an intermediary.


2021 ◽  
Vol 14 (1) ◽  
pp. 364
Author(s):  
Chih-Ping Kuo ◽  
Hung-Jiun Liao

Using circulating groundwater to cool air-conditioning is not new in high latitude regions but difficult in subtropical areas. Different from only using fans to remove the heat from indoor air for drier air in the high latitude region, the latent heat inside the humid air in subtropical areas makes the operation more difficult. Latent heat inside the humid air must remove away by air-conditioning including compressor and fan for cooling indoor air, which means more electrical power is required for the operation. To save total electrical power for the air-conditioning system is the main goal of this study. To use the advantage of groundwater with lower temperature to lower down the work of compressor, this research compared two ways, close/open types of water/groundwater circulation, both using groundwater to remove the heat generated by a 15RT (45 kW) air-conditioning. Full-scale tests and simulations were performed in this study to evaluate the efficiency of transferring the heat produced by air-conditioning systems to stably flowing groundwater in a grave stratum under Taipei Basin. With a closed circulating cooling water system, this study found that a 15RT air conditioner could only operate continuously for 4 h before it had to be shut down due to overheating. Additionally, groundwater must carry the heat away within the following 20 h. In changing the closed circulating water system to an open one, a system that uses a circulatory method to extract groundwater upwards and conduct heat exchange with an air conditioning system can enable the continuous operation of such a system with the same heat production condition. Numerical simulations for the heat dissipation behavior of two circulatory systems were performed herein. The results verified the aforementioned phenomena observed from both tests. The result showed both systems can provide air-conditioning working well. The total electrical power for a 15RT air-conditioning in sub-tropical areas can be reduced by 22% using circulating groundwater. Considering the system optimization, the total power consumption can be reduced by about 28%.


Author(s):  
Yongkang Peng ◽  
Xiaoyue Chen ◽  
Yeqiang Deng ◽  
Lan Lei ◽  
Zhan Haoyu ◽  
...  

Abstract The traditional corona discharge fluid model considers only electrons, positive and negative ions, and the discharge parameters are determined using the simplified weighting method involving the partial pressure ratio. Atmospheric pressure discharge plasma in humid air involves three main neutral gas molecule types: N2, O2, and H2O(g). However, in these conditions, the discharge process involves many types of particles and chemical reactions, and the charge and substance transfer processes are complex. At present, the databases of plasma chemical reaction equations are still expanding based on scholarly research. In this study, we examined the key particles and chemical reactions that substantially influence plasma characteristics. In summarizing the chemical reaction model for the discharge process of N2–O2–H2O(g) mixed gases, 65 particle types and 673 chemical reactions were investigated. On this basis, a global model of atmospheric pressure humid air discharge plasma was developed, with a focus on the variation of charged particles densities and chemical reaction rates with time under the excitation of a 0–200 Td pulsed electric field. Particles with a density greater than 1% of the electron density were classified as key particles. For such particles, the top ranking generation or consumption reactions (i.e., where the sum of their rates was greater than 95% of the total rate of the generation or consumption reactions) were classified as key chemical reactions On the basis of the key particles and reactions identified, a simplified global model was derived. A comparison of the global model with the simplified global model in terms of the model parameters, particle densities, reaction rates (with time), and calculation efficiencies demonstrated that both models can adequately identify the key particles and chemical reactions reflecting the chemical process of atmospheric pressure discharge plasma in humid air. Thus, by analyzing the key particles and chemical reaction pathways, the charge and substance transfer mechanism of atmospheric pressure pulse discharge plasma in humid air was revealed, and the mechanism underlying water vapor molecules’ influence on atmospheric pressure air discharge was elucidated.


Author(s):  
Olaf Hellmuth ◽  
Rainer Feistel ◽  
Thomas Foken

AbstractThe differences between one classical and three state-of-the-art formulations of the mass density of humid air were quantified. Here, we present both the calculi for direct determination of the humid-air mass density employing the virial form of the thermodynamic equation of state, and a sufficiently accurate look-up-table for the quick-look determination of the humid-air mass density, which is based on the advanced Thermodynamic Equation of Seawater 2010.


iScience ◽  
2021 ◽  
pp. 103565
Author(s):  
Primož Poredoš ◽  
Nada Petelin ◽  
Boris Vidrih ◽  
Tilen Žel ◽  
Qiuming Ma ◽  
...  
Keyword(s):  

2021 ◽  
Vol 8 (22) ◽  
pp. 2101934
Author(s):  
Maciej Rogala ◽  
Stanisław Sokołowski ◽  
Ugonna Ukegbu ◽  
Aneta Mierzwa ◽  
Robert Szoszkiewicz

Sign in / Sign up

Export Citation Format

Share Document