scholarly journals Effects of preload alteration on the degree of ischemia and function of ischemic myocardium under constant mean aortic pressure, coronary perfusion pressure and heart rate in isolated perfused canine heart.

1986 ◽  
Vol 50 (11) ◽  
pp. 1100-1112 ◽  
Author(s):  
Shoichi SATOH ◽  
Yukio MARUYAMA ◽  
Kouichi ASHIKAWA ◽  
Shogen ISOYAMA ◽  
Hideyuki SUZUKI ◽  
...  
1981 ◽  
Vol 22 (6) ◽  
pp. 959-970
Author(s):  
Makie HIGUCHI ◽  
Haruo ARAKI ◽  
Eiji TOMOMATSU ◽  
Matao SAKANASHI ◽  
Fumio TAKENAKA

1995 ◽  
Vol 50 (3) ◽  
pp. 381-396 ◽  
Author(s):  
Karen May-Newman ◽  
Odile Mathieu-Costello ◽  
Jeffrey H. Omens ◽  
Katherine Klumb ◽  
Andrew D. McCulloch

1999 ◽  
Vol 86 (2) ◽  
pp. 694-700 ◽  
Author(s):  
David P. Slovut ◽  
John C. Wenstrom ◽  
Richard B. Moeckel ◽  
Christopher T. Salerno ◽  
Soon J. Park ◽  
...  

A goal of clinicians caring for heart transplant recipients has been to use heart rate variability as a noninvasive means of diagnosing graft rejection. The determinants of beat-to-beat variability in the surgically denervated heart have yet to be elucidated. We used an isolated, blood buffer-perfused porcine heart preparation to quantitatively assess the relationship between coronary perfusion and sinus node automaticity. Hearts ( n = 9) were suspended in a Langendorff preparation, and heart rate (HR) fluctuations were quantified while perfusion pressure was modulated between 70/50, 80/60, 90/70, and 100/80 mmHg at 0.067 Hz. In 32 of 32 recordings, the cross spectrum of perfusion pressure vs. HR showed the largest peak centered at 0.067 Hz. In eight of nine experiments during nonpulsatile perfusion, HR accelerated as perfusion pressure was increased from 40 to 110 mmHg (mean increase 24.2 ± 3.0 beats/min). HR increased 0.34 beats/min per mmHg increase in perfusion pressure (least squares linear regression y = −25.8 mmHg + 0.34 x; r = 0.88, P < 0.0001). Administration of low- and high-dose nitroglycerin (Ntg) resulted in a modest increase in flow but produced a significant decrease in HR and blunted the response of HR to changes in perfusion pressure (HR increase 0.26 beats ⋅ min−1 ⋅ mmHg−1, r = 0.87, P < 0.0001 after low-dose Ntg; 0.25 beats ⋅ min−1 ⋅ mmHg−1, r = 0.78, P < 0.0001 after high-dose Ntg). These experiments suggest that sinus node discharge in the isolated perfused heart is mechanically coupled to perfusion pressure on a beat-to-beat basis.


1993 ◽  
Vol 264 (4) ◽  
pp. H1154-H1160 ◽  
Author(s):  
M. P. Moffat ◽  
C. A. Ward ◽  
J. R. Bend ◽  
T. Mock ◽  
P. Farhangkhoee ◽  
...  

Effects of cytochrome P-450 metabolites of arachidonic acid, epoxyeicosatrienoic acids (EETS; 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET), were examined in isolated guinea pig hearts and ventricular myocytes. Addition of 1-16 ng/ml EETs to normal isolated hearts produced no effects on contractility or coronary pressure. In hearts subjected to 60 min of low-flow ischemia, impairment of contractility and declines in heart rate and coronary perfusion pressure were similar in the presence or absence of 1 ng/ml EETs. However, in the presence of either 5,6- or 11,12-EET, recovery was delayed for the first 10 min only. No significant differences were found in any group regarding heart rate, coronary perfusion pressure, or energy metabolite content after 30 min of reperfusion. In myocytes, both 5,6- and 11,12-EET (100 pg/ml, 1.0 ng/ml, and 20 ng/ml) significantly increased cell shortening as well as intracellular calcium concentrations, whereas 8,9- or 14,15-EET was without effect on these parameters. These results describe for the first time the direct effects of various EETs on cardiac cell function as well as their ability to modulate some of the myocardial responses to postischemic reperfusion. The results suggest a potential role for these substances in the response of the heart to pathological insult.


1992 ◽  
Vol 262 (4) ◽  
pp. H1029-H1035
Author(s):  
K. S. Seiler ◽  
J. P. Kehrer ◽  
J. W. Starnes

The effect of coronary perfusion pressure during reoxygenation on recovery of endocardial flow, arrhythmogenesis, and mechanical function was investigated in the isolated rat heart. Hearts were subjected to 30 min of substrate-free hypoxia followed by 30 min reoxygenation at either 80 or 150 cmH2O perfusion pressure. No flow areas were quantified by 0.3% phthalocyanine blue injection after 30 min of hypoxia, 30 min reoxygenation at 80 cmH2O, or 30 min reoxygenation at 150 cmH2O. After hypoxia, 31 +/- 2% of the myocardium was unperfused. After 80 cmH2O reoxygenation, 13 +/- 4% of the heart remained unperfused. Ten of 12 (83%) 80-cmH2O hearts were in sustained fibrillation after 10 min of reoxygenation. Reoxygenation at 150 cmH2O resulted in complete reperfusion of the myocardium. Fibrillation was absent in all hearts reoxygenated at this higher pressure. Functional recovery after 30 min reoxygenation (% of normoxic heart rate x left ventricular developed pressure) was significantly (P less than 0.05) higher in 150 cmH2O vs. 80 cmH2O (60 +/- 5 vs. 42 +/- 8%). Elevating perfusion pressure upon reoxygenation appears to counter the vascular compression caused by contracture and leads to a more rapid and homogeneous restoration of coronary flow during the transition from the hypoxic to the normoxic state.


1992 ◽  
Vol 262 (1) ◽  
pp. H68-H77
Author(s):  
F. L. Abel ◽  
R. R. Zhao ◽  
R. F. Bond

Effects of ventricular compression on maximally dilated left circumflex coronary blood flow were investigated in seven mongrel dogs under pentobarbital anesthesia. The left circumflex artery was perfused with the animals' own blood at a constant pressure (63 mmHg) while left ventricular pressure was experimentally altered. Adenosine was infused to produce maximal vasodilation, verified by the hyperemic response to coronary occlusion. Alterations of peak left ventricular pressure from 50 to 250 mmHg resulted in a linear decrease in total circumflex flow of 1.10 ml.min-1 x 100 g heart wt-1 for each 10 mmHg of peak ventricular to coronary perfusion pressure gradient; a 2.6% decrease from control levels. Similar slopes were obtained for systolic and diastolic flows as for total mean flow, implying equal compressive forces in systole as in diastole. Increases in left ventricular end-diastolic pressure accounted for 29% of the flow changes associated with an increase in peak ventricular pressure. Doubling circumferential wall tension had a minimal effect on total circumflex flow. When the slopes were extrapolated to zero, assuming linearity, a peak left ventricular pressure of 385 mmHg greater than coronary perfusion pressure would be required to reduce coronary flow to zero. The experiments were repeated in five additional animals but at different perfusion pressures from 40 to 160 mmHg. Higher perfusion pressures gave similar results but with even less effect of ventricular pressure on coronary flow or coronary conductance. These results argue for an active storage site for systolic arterial flow in the dilated coronary system.


2021 ◽  
Vol 5 (3) ◽  
Author(s):  
Filippo Zilio ◽  
Simone Muraglia ◽  
Roberto Bonmassari

Abstract Background A ‘catecholamine storm’ in a case of pheochromocytoma can lead to a transient left ventricular dysfunction similar to Takotsubo cardiomyopathy. A cardiogenic shock can thus develop, with high left ventricular end-diastolic pressure and a reduction in coronary perfusion pressure. This scenario can ultimately lead to a cardiac arrest, in which unloading the left ventricle with a peripheral left ventricular assist device (Impella®) could help in achieving the return of spontaneous circulation (ROSC). Case summary A patient affected by Takotsubo cardiomyopathy caused by a pheochromocytoma presented with cardiogenic shock that finally evolved into refractory cardiac arrest. Cardiopulmonary resuscitation was performed but ROSC was achieved only after Impella® placement. Discussion In the clinical scenario of Takotsubo cardiomyopathy due to pheochromocytoma, when cardiogenic shock develops treatment is difficult because exogenous catecholamines, required to maintain organ perfusion, could exacerbate hypertension and deteriorate the cardiomyopathy. Moreover, as the coronary perfusion pressure is critically reduced, refractory cardiac arrest could develop. Although veno-arterial extra-corporeal membrane oxygenation (va-ECMO) has been advocated as the treatment of choice for in-hospital refractory cardiac arrest, in the presence of left ventricular overload a device like Impella®, which carries fewer complications as compared to ECMO, could be effective in obtaining the ROSC by unloading the left ventricle.


Sign in / Sign up

Export Citation Format

Share Document