Nitro–Nitrite Isomerization and Transition State Switching in the Dissociation of Ionized Nitromethane: A Threshold Photoelectron–Photoion Coincidence Spectroscopy Study
Threshold photoelectron–photoion coincidence (TPEPICO) spectroscopy has been employed to investigate the competition between bond cleavage and rearrangement reactions in the dissociation of ionized nitromethane, 1. Modeling TPEPICO breakdown diagrams with a combination of RRKM theory and ab initio calculations at the G3 level of theory allowed the derivation of the activation energy for the isomerisation of 1 to ionized methyl nitrite, 2, 82 kJ mol−1. In addition, evidence was found for a transition state switch in the bond cleavage reaction in 1 leading to CH3• + NO2+. As internal energy increases, the effective transition state for this reaction becomes tighter (i.e. is characterized by a lower entropy of activation, Δ‡S). Fitted thresholds for NO+ and CH2OHO+ ions, originating from the isomeric methyl nitrite ion, are consistent with G3 level ab initio calculations.