scholarly journals Dual coding potential of a 2′,5′-branched ribonucleotide in DNA

RNA ◽  
2018 ◽  
Vol 25 (1) ◽  
pp. 105-120 ◽  
Author(s):  
Jessica Döring ◽  
Thomas Hurek
Keyword(s):  
Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 15
Author(s):  
Andrea M. Kaminski ◽  
Thomas A. Kunkel ◽  
Lars C. Pedersen ◽  
Katarzyna Bebenek

8-oxo-guanine (8OG) is a common base lesion, generated by reactive oxygen species, which has been associated with human diseases such as cancer, aging-related neurodegenerative disorders and atherosclerosis. 8OG is highly mutagenic, due to its dual-coding potential it can pair both with adenine or cytidine. Therefore, it creates a challenge for DNA polymerases striving to correctly replicate and/or repair genomic or mitochondrial DNA. Numerous structural studies provide insights into the mechanistic basis of the specificity of 8OG bypass by DNA polymerases from different families. Here, we focus on how repair polymerases from Family X (Pols β, λ and µ) engage DNA substrates containing the oxidized guanine. We review structures of binary and ternary complexes for the three polymerases, which represent distinct steps in their catalytic cycles—the binding of the DNA substrate and the incoming nucleotide, followed by its insertion and extension. At each of these steps, the polymerase may favor or exclude the correct C or incorrect A, affecting the final outcome, which varies depending on the enzyme.


2004 ◽  
Vol 23 (17) ◽  
pp. 3452-3461 ◽  
Author(s):  
Luis G Brieba ◽  
Brandt F Eichman ◽  
Robert J Kokoska ◽  
Sylvie Doublié ◽  
Tom A Kunkel ◽  
...  

2020 ◽  
Author(s):  
Hunmin Jung ◽  
Seongmin Lee

Reactive oxygen species induced by ionizing radiation and metabolic pathways generate 7,8-dihydro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as two major forms of oxidative damage. The mutagenicity of oxoG, which promotes G to T transversions, is attributed to the lesion’s conformational flexibility that enables Hoogsteen base pairing with dATP in the confines of DNA polymerases. The mutagenesis mechanism of oxoA, which preferentially causes A to C transversions, remains poorly characterized. While structures for oxoA bypass by human DNA polymerases are available, that of prokaryotic DNA polymerases have not been reported. Herein, we report kinetic and structural characterizations of Sulfolobus solfataricus Dpo4 incorporating a nucleotide opposite oxoA. Our kinetic studies show oxoA at the templating position reduces the replication fidelity by ~560-fold. The catalytic efficiency of the oxoA:dGTP insertion is ~300-fold greater than that of the dA:dGTP insertion, highlighting the promutagenic nature of oxoA. The relative efficiency of the oxoA:dGTP misincorporation is ~5-fold greater than that of the oxoG:dATP misincorporation, suggesting the mutagenicity of oxoA is comparable to that of oxoG. In the Dpo4 replicating base pair site, oxoA in the anti-conformation forms a Watson-Crick base pair with an incoming dTTP, while oxoA in the syn-conformation assumes Hoogsteen base pairing with an incoming dGTP, displaying the dual coding potential of the lesion. Within the Dpo4 active site, the oxoA:dGTP base pair adopts a Watson-Crick-like geometry, indicating Dpo4 influences the oxoA:dGTP base pair conformation. Overall, the results reported here provide insights into the miscoding properties of the major oxidative adenine lesion during translesion synthesis.


1987 ◽  
Vol 7 (12) ◽  
pp. 4266-4272 ◽  
Author(s):  
L W Stanton ◽  
J M Bishop

NMYC is a gene whose amplification and overexpression have been implicated in the generation of certain human malignancies. Little is known of how the expression of NMYC is normally controlled. We have therefore characterized transcription from the gene and the structure and stability of the resulting mRNAs. Transcription from NMYC is exceptionally complex: it initiates at numerous sites that may be grouped under the control of two promoters, and the multiplicity of initiation sites combines with alternative splicing to engender two forms of mRNA. The mRNAs have different 5' leader sequences (alternative first exons of the gene) but identical bodies (the second and third exons of the gene). Both forms of mRNA are unstable, with half-lives of ca. 15 min. Both encode the previously identified 65,000 and 67,000-dalton products of NMYC. However, the alternative first exons contain distinctive open reading frames that may diversify the coding potential of NMYC. The complexities in transcription of NMYC expand the means by which expression of the gene might be controlled.


2003 ◽  
Vol 100 (25) ◽  
pp. 14976-14981 ◽  
Author(s):  
E. Murphy ◽  
D. Yu ◽  
J. Grimwood ◽  
J. Schmutz ◽  
M. Dickson ◽  
...  

2006 ◽  
Vol 80 (8) ◽  
pp. 4179-4182 ◽  
Author(s):  
Pierre Rivailler ◽  
Amitinder Kaur ◽  
R. Paul Johnson ◽  
Fred Wang

ABSTRACT A pathogenic isolate of rhesus cytomegalovirus (rhCMV 180.92) was cloned, sequenced, and annotated. Comparisons with the published rhCMV 68.1 genome revealed 8 open reading frames (ORFs) in isolate 180.92 that are absent in 68.1, 10 ORFs in 68.1 that are absent in 180.92, and 34 additional ORFs that were not previously annotated. Most of the differences appear to be due to genetic rearrangements in both isolates from a region that is frequently altered in human CMV (hCMV) during in vitro passage. These results indicate that the rhCMV ORF repertoire is larger than previously recognized. Like hCMV, understanding of the complete coding capacity of rhCMV is complicated by genomic instability and may require comparisons with additional isolates in vitro and in vivo.


2021 ◽  
Vol 25 (10) ◽  
pp. 883-895
Author(s):  
Yanchao Bi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document