scholarly journals Genomic Sequence of Rhesus Cytomegalovirus 180.92: Insights into the Coding Potential of Rhesus Cytomegalovirus

2006 ◽  
Vol 80 (8) ◽  
pp. 4179-4182 ◽  
Author(s):  
Pierre Rivailler ◽  
Amitinder Kaur ◽  
R. Paul Johnson ◽  
Fred Wang

ABSTRACT A pathogenic isolate of rhesus cytomegalovirus (rhCMV 180.92) was cloned, sequenced, and annotated. Comparisons with the published rhCMV 68.1 genome revealed 8 open reading frames (ORFs) in isolate 180.92 that are absent in 68.1, 10 ORFs in 68.1 that are absent in 180.92, and 34 additional ORFs that were not previously annotated. Most of the differences appear to be due to genetic rearrangements in both isolates from a region that is frequently altered in human CMV (hCMV) during in vitro passage. These results indicate that the rhCMV ORF repertoire is larger than previously recognized. Like hCMV, understanding of the complete coding capacity of rhCMV is complicated by genomic instability and may require comparisons with additional isolates in vitro and in vivo.

2021 ◽  
Vol 11 ◽  
Author(s):  
Eoin Dervan ◽  
Dibyangana D. Bhattacharyya ◽  
Jake D. McAuliffe ◽  
Faizan H. Khan ◽  
Sharon A. Glynn

Human endogenous retroviruses (HERV), ancient integrations of exogenous viruses, make up 8% of our genome. Long thought of as mere vestigial genetic elements, evidence is now accumulating to suggest a potential functional role in numerous pathologies including neurodegenerative diseases, autoimmune disorders, and multiple cancers. The youngest member of this group of transposable elements is HERV-K (HML-2). Like the majority of HERV sequences, significant post-insertional mutations have disarmed HERV-K (HML-2), preventing it from producing infectious viral particles. However, some insertions have retained limited coding capacity, and complete open reading frames for all its constituent proteins can be found throughout the genome. For this reason HERV-K (HML-2) has garnered more attention than its peers. The tight epigenetic control thought to suppress expression in healthy tissue is lost during carcinogenesis. Upregulation of HERV-K (HML-2) derived mRNA and protein has been reported in a variety of solid and liquid tumour types, and while causality has yet to be established, progressively more data are emerging to suggest this phenomenon may contribute to tumour growth and metastatic capacity. Herein we discuss its potential utility as a diagnostic tool and therapeutic target in light of the current in vitro, in vivo and clinical evidence linking HERV-K (HML-2) to tumour progression.


Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 2936-2944 ◽  
Author(s):  
Ramachandran Ramalingam ◽  
Shahin Rafii ◽  
Stefan Worgall ◽  
Douglas E. Brough ◽  
Ronald G. Crystal

Abstract Although endothelial cells are quiescent and long-lived in vivo, when they are removed from blood vessels and cultured in vitro they die within days to weeks. In studies of the interaction of E1−E4+ replication–deficient adenovirus (Ad) vectors and human endothelium, the cells remained quiescent and were viable for prolonged periods. Evaluation of these cultures showed that E1−E4+ Ad vectors provide an “antiapoptotic” signal that, in association with an increase in the ratio of Bcl2 to Bax levels, induces the endothelial cells to enter a state of “suspended animation,” remaining viable for at least 30 days, even in the absence of serum and growth factors. Although the mechanisms initiating these events are unclear, the antiapoptoic signal requires the presence of E4 genes in the vector genome, suggesting that one or more E4 open reading frames of subgroup C Ad initiate a “pro-life” program that modifies cultured endothelial cells to survive for prolonged periods.


2003 ◽  
Vol 77 (20) ◽  
pp. 11268-11273 ◽  
Author(s):  
Nikolai Klymiuk ◽  
Mathias Müller ◽  
Gottfried Brem ◽  
Bernhard Aigner

ABSTRACT Endogenous retrovirus (ERV) sequences have been found in all mammals. In vitro and in vivo experiments revealed ERV activation and cross-species infection in several species. Sheep (Ovis aries) are used for various biotechnological purposes; however, they have not yet been comprehensively screened for ERV sequences. Therefore, the aim of the study was to classify the ERV sequences in the ovine genome (OERV) by analyzing the retroviral pro-pol sequences. Three OERV β families and nine OERV γ families were revealed. Novel open reading frames (ORF) in the amplified proviral fragment were found in one OERV β family and two OERV γ families. Hybrid OERV produced by putative recombination events were not detected. Quantitative analysis of the OERV sequences in the ovine genome revealed no relevant variations in the endogenous retroviral loads of different breeds. Expression analysis of different tissues from fetal and pregnant sheep detected mRNA from both gammaretrovirus families, showing ORF fragments. Thus, the release of retroviruses from sheep cells cannot be excluded.


2019 ◽  
Vol 36 (7) ◽  
pp. 2053-2059 ◽  
Author(s):  
Saket Choudhary ◽  
Wenzheng Li ◽  
Andrew D. Smith

Abstract Motivation Ribo-seq, a technique for deep-sequencing ribosome-protected mRNA fragments, has enabled transcriptome-wide monitoring of translation in vivo. It has opened avenues for re-evaluating the coding potential of open reading frames (ORFs), including many short ORFs that were previously presumed to be non-translating. However, the detection of translating ORFs, specifically short ORFs, from Ribo-seq data, remains challenging due to its high heterogeneity and noise. Results We present ribotricer, a method for detecting actively translating ORFs by directly leveraging the three-nucleotide periodicity of Ribo-seq data. Ribotricer demonstrates higher accuracy and robustness compared with other methods at detecting actively translating ORFs including short ORFs on multiple published datasets across species inclusive of Arabidopsis, Caenorhabditis elegans, Drosophila, human, mouse, rat, yeast and zebrafish. Availability and implementation Ribotricer is available at https://github.com/smithlabcode/ribotricer. All analysis scripts and results are available at https://github.com/smithlabcode/ribotricer-results. Supplementary information Supplementary data are available at Bioinformatics online.


1994 ◽  
Vol 14 (7) ◽  
pp. 4485-4492 ◽  
Author(s):  
B A Dombroski ◽  
Q Feng ◽  
S L Mathias ◽  
D M Sassaman ◽  
A F Scott ◽  
...  

L1 elements constitute a highly repetitive human DNA family (50,000 to 100,000 copies) lacking long terminal repeats and ending in a poly(A) tail. Some L1 elements are capable of retrotransposition in the human genome (Kazazian, H. H., Jr., C. Wong, H. Youssoufian, A. F. Scott, D. G. Phillips, and S.E. Antonarakis, Nature (London) 332:164-166, 1988). Although most are 5' truncated, a consensus sequence of complete L1 elements is 6 kb long and contains two open reading frames (ORFs) (Scott, A. F., B. J. Schmeckpeper, M. Abdelrazik, C. T. Comey, B. O'Hara, J. P. Rossiter, T. Cooley, P. Health, K. D. Smith, and L. Margolet, Genomics 1:113-125, 1987). The protein encoded by ORF2 has reverse transcriptase (RT) activity in vitro (Mathias, S. L., A. F. Scott, H. H. Kazazian, Jr., J. D. Boeke, and A. Gabriel, Science 254:1808-1810, 1991). Because L1 elements are so numerous, efficient methods for identifying active copies are required. We have developed a simple in vivo assay for the activity of L1 RT based on the system developed by Derr et al. (Derr, L. K., J. N. Strathern, and D. J. Garfinkel, Cell 67:355-364, 1991) for yeast HIS3 pseudogene formation. L1 ORF2 displays an in vivo RT activity similar to that of yeast Ty1 RT in this system and generates pseudogenes with unusual structures. Like the HIS3 pseudogenes whose formation depends on Ty1 RT, the HIS3 pseudogenes generated by L1 RT are joined to Ty1 sequences and often are part of complex arrays of Ty1 elements, multiple HIS3 pseudogenes, and hybrid Ty1/L1 elements. These pseudogenes differ from those previously described in that there are base pairs of unknown origin inserted at several of the junctions. In two of three HIS3 pseudogenes studied, the L1 RT appears to have jumped from the 5' end of a Ty1/L1 transcript to the poly(A) tract of the HIS3 RNA.


1990 ◽  
Vol 10 (8) ◽  
pp. 4375-4378
Author(s):  
G Krupitza ◽  
G Thireos

Translation of GCN4 mRNA is activated when yeast cells are grown under conditions of amino acid limitation. In this study, we established the conditions through which translation of the GCN4 mRNA could be activated in a homologous in vitro system. This activation paralleled the in vivo situation: it required the small open reading frames located in the 5' untranslated region of the GCN4 mRNA, and it was coupled with reduced rates of 43S preinitiation complex formation. Translational derepression in vitro was triggered by uncharged tRNA molecules, demonstrating that deacylated tRNAs are more proximal signals for translational activation of the GCN4 mRNA.


1990 ◽  
Vol 10 (8) ◽  
pp. 4375-4378 ◽  
Author(s):  
G Krupitza ◽  
G Thireos

Translation of GCN4 mRNA is activated when yeast cells are grown under conditions of amino acid limitation. In this study, we established the conditions through which translation of the GCN4 mRNA could be activated in a homologous in vitro system. This activation paralleled the in vivo situation: it required the small open reading frames located in the 5' untranslated region of the GCN4 mRNA, and it was coupled with reduced rates of 43S preinitiation complex formation. Translational derepression in vitro was triggered by uncharged tRNA molecules, demonstrating that deacylated tRNAs are more proximal signals for translational activation of the GCN4 mRNA.


2005 ◽  
Vol 79 (23) ◽  
pp. 14909-14922 ◽  
Author(s):  
Boyd Yount ◽  
Rhonda S. Roberts ◽  
Amy C. Sims ◽  
Damon Deming ◽  
Matthew B. Frieman ◽  
...  

ABSTRACT SARS coronavirus (SARS-CoV) encodes several unique group-specific open reading frames (ORFs) relative to other known coronaviruses. To determine the significance of the SARS-CoV group-specific ORFs in virus replication in vitro and in mice, we systematically deleted five of the eight group-specific ORFs, ORF3a, OF3b, ORF6, ORF7a, and ORF7b, and characterized recombinant virus replication and gene expression in vitro. Deletion of the group-specific ORFs of SARS-CoV, either alone or in various combinations, did not dramatically influence replication efficiency in cell culture or in the levels of viral RNA synthesis. The greatest reduction in virus growth was noted following ORF3a deletion. SARS-CoV spike (S) glycoprotein does not encode a rough endoplasmic reticulum (rER)/Golgi retention signal, and it has been suggested that ORF3a interacts with and targets S glycoprotein retention in the rER/Golgi apparatus. Deletion of ORF3a did not alter subcellular localization of the S glycoprotein from distinct punctuate localization in the rER/Golgi apparatus. These data suggest that ORF3a plays little role in the targeting of S localization in the rER/Golgi apparatus. In addition, insertion of the 29-bp deletion fusing ORF8a/b into the single ORF8, noted in early-stage SARS-CoV human and civet cat isolates, had little if any impact on in vitro growth or RNA synthesis. All recombinant viruses replicated to wild-type levels in the murine model, suggesting that either the group-specific ORFs play little role in in vivo replication efficiency or that the mouse model is not of sufficient quality for discerning the role of the group-specific ORFs in disease origin and development.


2001 ◽  
Vol 183 (23) ◽  
pp. 6965-6970 ◽  
Author(s):  
José A. Horcajadas ◽  
Wilfried J. J. Meijer ◽  
Fernando Rojo ◽  
Margarita Salas

ABSTRACT Bacteriophage GA-1, which infects Bacillus sp. strain G1R, is evolutionarily related to phage φ29, which infectsBacillus subtilis. We report the characterization of several GA-1 promoters located at either end of its linear genome. Some of them are unique for GA-1 and drive the expression of open reading frames that have no counterparts in the genome of φ29 or related phages. These unique promoters are active at early infection times and are repressed at late times. In vitro transcription reactions revealed that the purified GA-1-encoded protein p6 represses the activity of these promoters, although the amount of p6 required to repress transcription was different for each promoter. The level of protein p6 produced in vivo increases rapidly during the first stage of the infection cycle. The protein p6 concentration may serve to modulate the expression of these early promoters as infection proceeds.


2021 ◽  
Author(s):  
Fuxiao Liu ◽  
Jiahui Lin ◽  
Qianqian Wang ◽  
Hu Shan

Abstract Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne zoonosis with a high mortality rate in humans. Additionally, dogs are frequently reported to be infected with this disease. There has been no commercially available vaccine for humans and animals as yet. The SFTS is caused by Dabie bandavirus (DBV), formerly known as SFTS virus. The DBV is now classified into the genus Bandavirus in the family Phenuiviridae. DBV Gn and Gc can induce specific immune responses in vivo. In this study, we used reverse genetics to construct two recombinant canine distemper viruses (rCDV), rCDV-Gn and -Gc, which could express Dabie bandavirus Gn and Gc in vitro, respectively. Two foreign sequences, Gn and Gc open reading frames, were genetically stable during twenty serial viral passages in cells. Growth curve of the rCDV-Gc basically coincided with that of a wild-type CDV, but showed a significant difference from that of the rCDV-Gn. The rCDV-Gn and -Gc were derived from a common parental CDV, the virulence-attenuating QN strain. Therefore, if proven to be efficient in resisting both canine distemper and SFTS in dogs, either or both recombinant CDVs would be potential vaccine candidates.


Sign in / Sign up

Export Citation Format

Share Document