scholarly journals Ploidy Assessment of Porcine Haploid and Diploid Parthenogenetic Embryos by Fluorescent In Situ Hybridization Detecting a Chromosome 1-Specific Sequence, Sus scrofa Mc1 Satellite DNA

2011 ◽  
Vol 57 (2) ◽  
pp. 307-311 ◽  
Author(s):  
Shoichiro SEMBON ◽  
Dai-ichiro FUCHIMOTO ◽  
Masaki IWAMOTO ◽  
Shun-ichi SUZUKI ◽  
Akira ONISHI
1991 ◽  
Vol 40 (1) ◽  
pp. 117-120 ◽  
Author(s):  
Avirachan T. Tharapel ◽  
Mazin B. Qumsiyeh ◽  
Paula R. Martens ◽  
Sugandhi A. Tharapel ◽  
James D. Dalton ◽  
...  

Genome ◽  
2011 ◽  
Vol 54 (3) ◽  
pp. 184-195 ◽  
Author(s):  
Robert T. Gaeta ◽  
Tatiana V. Danilova ◽  
Changzeng Zhao ◽  
Rick E. Masonbrink ◽  
Morgan E. McCaw ◽  
...  

Maize-engineered minichromosomes are easily recovered from telomere-truncated B chromosomes but are rarely recovered from A chromosomes. B chromosomes lack known genes, and their truncation products are tolerated and transmitted during meiosis. In contrast, deficiency gametes resulting from truncated A chromosomes prevent their transmission. We report here a de novo compensating translocation that permitted recovery of a large truncation of chromosome 1 in maize. The truncation (trunc-1) and translocation with chromosome 6 (super-6) occurred during telomere-mediated truncation experiments and were characterized using single-gene fluorescent in situ hybridization (FISH) probes. The truncation contained a transgene signal near the end of the broken chromosome and transmitted together with the compensating translocation as a heterozygote to approximately 41%–55% of progeny. Transmission as an addition chromosome occurred in ~15% of progeny. Neither chromosome transmitted through pollen. Transgene expression (Bar) cosegregated with trunc-1 transcriptionally and phenotypically. Meiosis in T1 plants revealed eight bivalents and one tetravalent chain composed of chromosome 1, trunc-1, chromosome 6, and super-6 in diplotene and diakinesis. Our data suggest that de novo compensating translocations allow recovery of truncated A chromosomes by compensating deficiency in female gametes and by affecting chromosome pairing and segregation. The truncated chromosome can be maintained as an extra chromosome or together with the super-6 as a heterozygote.


1992 ◽  
Vol 62 (2) ◽  
pp. 140-143 ◽  
Author(s):  
Hitoshi Nakagawa ◽  
Johji Inazawa ◽  
Shinichi Misawa ◽  
Shinji Tanaka ◽  
Teruyuki Takashima ◽  
...  

Genome ◽  
2004 ◽  
Vol 47 (4) ◽  
pp. 742-746 ◽  
Author(s):  
Francesco Fontana ◽  
Ronald M Bruch ◽  
Fred P Binkowski ◽  
Massimo Lanfredi ◽  
Milvia Chicca ◽  
...  

A karyotype analysis using several staining techniques was carried out on the North American lake sturgeon, Acipenser fulvescens. The chromosome number was found to be 2n = 262 ± 6. A representative karyotype of 264 chromosomes was composed of 134 meta- and submetacentrics, 70 telo- and acrocentrics, and 60 microchromosomes. The constitutive heterochromatin, revealed by C banding, was localized in various positions on several chromosomes, including microchromosomes. The signals of fluorescent in situ hybridization (FISH) with a HindIII satellite DNA probe were visible as centromeric heterochromatin blocks on 48 chromosomes. The telomeric repeat (TTAGGG)n detected by FISH was localized at both ends of all chromosomes and two chromosomes were entirely marked. Fluorescent staining with GC-specific chromomycin A3 showed recognizable fluorescent regions, whereas a more uniform base composition was revealed by the AT-specific 4',6-diamidino-2-phenylindole (DAPI). After silver staining, the active nucleolar organizer regions (NORs) were detected on 12 chromosomes. FISH with the 5S probe showed four signals on four small chromosomes. Our data suggest that A. fulvescens is a tetraploid species.Key words: karyotype, C banding, telomeric sequence, fluorochrome staining, satellite DNA, 5S rDNA.


2013 ◽  
Vol 14 (2) ◽  
pp. 4135-4147 ◽  
Author(s):  
Elva Cortés-Gutiérrez ◽  
Brenda Ortíz-Hernández ◽  
Martha Dávila-Rodríguez ◽  
Ricardo Cerda-Flores ◽  
José Fernández ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document