centromeric heterochromatin
Recently Published Documents


TOTAL DOCUMENTS

215
(FIVE YEARS 9)

H-INDEX

42
(FIVE YEARS 1)

2021 ◽  
pp. gr.275981.121
Author(s):  
Chenxin Li ◽  
Jonathan I. Gent ◽  
Hengping Xu ◽  
Hong Fu ◽  
Scott D. Russell ◽  
...  

The zygote, a totipotent stem cell, is crucial to the life cycle of sexually reproducing organisms. It is produced by the fusion of two differentiated cells - the egg and sperm, which in plants have radically different siRNA transcriptomes from each other, and from multicellular embryos. Due to technical challenges, the epigenetic changes that accompany the transition from differentiated gametes to totipotent zygote are poorly understood. Since siRNAs serve as both regulators and outputs of the epigenome, we performed here the successful characterization of small RNA transcriptomes of zygotes from rice. Zygote small RNAs exhibited extensive maternal carryover and an apparent lack of paternal contribution, indicated by absence of sperm signature siRNAs. Zygote formation was accompanied by widespread redistribution of 24-nt siRNAs relative to gametes, such that ~70% of the zygote siRNA loci did not overlap any egg cell siRNA loci. Newly-detected siRNA loci in zygote are gene proximal and not associated with centromeric heterochromatin, similar to canonical siRNAs, in sharp contrast to gametic siRNA loci which are gene-distal and heterochromatic. In addition, zygote but not egg siRNA loci were associated with high DNA methylation in the mature embryo. Thus, the zygote begins transitioning before the first embryonic division to an siRNA profile that is associated with future RdDM in embryogenesis. These findings indicate that in addition to changes in gene expression, the transition to totipotency in the plant zygote is accompanied by resetting of the epigenetic reprogramming that occurred during gamete formation.



2021 ◽  
Vol 11 ◽  
Author(s):  
Ljudevit Luka Boštjančić ◽  
Lena Bonassin ◽  
Lucija Anušić ◽  
Leona Lovrenčić ◽  
Višnja Besendorfer ◽  
...  

Pontastacus leptodactylus is a native European crayfish species found in both freshwater and brackish environments. It has commercial importance for fisheries and aquaculture industries. Up till now, most studies concerning P. leptodactylus have focused onto gaining knowledge about its phylogeny and population genetics. However, little is known about the chromosomal evolution and genome organization of this species. Therefore, we performed clustering analysis of a low coverage genomic dataset to identify and characterize repetitive DNA in the P. leptodactylus genome. In addition, the karyogram of P. leptodactylus (2n = 180) is presented here for the first time consisting of 75 metacentric, 14 submetacentric, and a submetacentric/metacentric heteromorphic chromosome pair. We determined the genome size to be at ~18.7 gigabase pairs. Repetitive DNA represents about 54.85% of the genome. Satellite DNA repeats are the most abundant type of repetitive DNA, making up to ~28% of the total amount of repetitive elements, followed by the Ty3/Gypsy retroelements (~15%). Our study established a surprisingly high diversity of satellite repeats in P. leptodactylus. The genome of P. leptodactylus is by far the most satellite-rich genome discovered to date with 258 satellite families described. Of the five mapped satellite DNA families on chromosomes, PlSAT3-411 co-localizes with the AT-rich DAPI positive probable (peri)centromeric heterochromatin on all chromosomes, while PlSAT14-79 co-localizes with the AT-rich DAPI positive (peri)centromeric heterochromatin on one chromosome and is also located subterminally and intercalary on some chromosomes. PlSAT1-21 is located intercalary in the vicinity of the (peri)centromeric heterochromatin on some chromosomes, while PlSAT6-70 and PlSAT7-134 are located intercalary on some P. leptodactylus chromosomes. The FISH results reveal amplification of interstitial telomeric repeats (ITRs) in P. leptodactylus. The prevalence of repetitive elements, especially the satellite DNA repeats, may have provided a driving force for the evolution of the P. leptodactylus genome.



2021 ◽  
Author(s):  
Hyun-Soo Kim ◽  
Benjamin Roche ◽  
Sonali Bhattacharjee ◽  
Leila Todeschini ◽  
An-Yun Chang ◽  
...  

Heterochromatin has crucial roles in genome stability by silencing repetitive DNA and by suppressing recombination. In the fission yeast Schizosaccharomyces pombe, Clr4 methylates histone H3 lysine 9 (H3K9) to maintain centromeric heterochromatin during the cell cycle, guided by RNA interference (RNAi). Clr4 interacts with a specialized ubiquitination complex CLRC, which is recruited in part by small RNA and the RNAi transcriptional silencing complex (RITS) but otherwise, the role of CLRC is unknown. Here we show that the E2 ubiquitin conjugating enzyme Ubc4 interacts with CLRC and targets Clr4 for mono-ubiquitination at an intrinsically disordered region. Mono-ubiquitination is essential for the transition from co-transcriptional (H3K9me2) to transcriptional (H3K9me3) gene silencing by transiently releasing Clr4 from centromeric heterochromatin, and is reversed by the deubiquitinating enzyme Ubp3. Addition of ubiquitin changes the liquid-liquid phase separation (LLPS) of Clr4 to enhance its dynamic activity. Ubc4-CLRC also poly-ubiquitinates Bdf2, the homologue of BET family double bromodomain protein BRD4 for degradation, which otherwise accumulates at centromeres to promote transcription and production of small RNAs.



2020 ◽  
Vol 22 (1) ◽  
pp. 296
Author(s):  
Antonio Sermek ◽  
Isidoro Feliciello ◽  
Đurđica Ugarković

In the flour beetle, Tribolium castaneum (peri)centromeric heterochromatin is mainly composed of a major satellite DNA TCAST1 interspersed with minor satellites. With the exception of heterochromatin, clustered satellite repeats are found dispersed within euchromatin. In order to uncover a possible satellite DNA function within the beetle genome, we analysed the expression of the major TCAST1 and a minor TCAST2 satellite during the development and upon heat stress. The results reveal that TCAST1 transcription was strongly induced at specific embryonic stages and upon heat stress, while TCAST2 transcription is stable during both processes. TCAST1 transcripts are processed preferentially into piRNAs during embryogenesis and into siRNAs during later development, contrary to TCAST2 transcripts, which are processed exclusively into piRNAs. In addition, increased TCAST1 expression upon heat stress is accompanied by the enrichment of the silent histone mark H3K9me3 on the major satellite, while the H3K9me3 level at TCAST2 remains unchanged. The transcription of the two satellites is proposed to be affected by the chromatin state: heterochromatin and euchromatin, which are assumed to be the prevalent sources of TCAST1 and TCAST2 transcripts, respectively. In addition, distinct regulation of the expression might be related to diverse roles that major and minor satellite RNAs play during the development and stress response.



2020 ◽  
Vol 48 (22) ◽  
pp. 12751-12777
Author(s):  
Cathia Rausch ◽  
Patrick Weber ◽  
Paulina Prorok ◽  
David Hörl ◽  
Andreas Maiser ◽  
...  

Abstract To ensure error-free duplication of all (epi)genetic information once per cell cycle, DNA replication follows a cell type and developmental stage specific spatio-temporal program. Here, we analyze the spatio-temporal DNA replication progression in (un)differentiated mouse embryonic stem (mES) cells. Whereas telomeres replicate throughout S-phase, we observe mid S-phase replication of (peri)centromeric heterochromatin in mES cells, which switches to late S-phase replication upon differentiation. This replication timing reversal correlates with and depends on an increase in condensation and a decrease in acetylation of chromatin. We further find synchronous duplication of the Y chromosome, marking the end of S-phase, irrespectively of the pluripotency state. Using a combination of single-molecule and super-resolution microscopy, we measure molecular properties of the mES cell replicon, the number of replication foci active in parallel and their spatial clustering. We conclude that each replication nanofocus in mES cells corresponds to an individual replicon, with up to one quarter representing unidirectional forks. Furthermore, with molecular combing and genome-wide origin mapping analyses, we find that mES cells activate twice as many origins spaced at half the distance than somatic cells. Altogether, our results highlight fundamental developmental differences on progression of genome replication and origin activation in pluripotent cells.



Genome ◽  
2020 ◽  
Vol 63 (7) ◽  
pp. 357-364
Author(s):  
Egizia Falistocco ◽  
Nicoletta Ferradini

Annonaceae represent the largest extant family among the early divergent angiosperms. Despite the long-standing interest in its evolutionary and taxonomic aspects, cytogenetic studies on this family remain extremely few even on economically important species. With this study, we realized a detailed characterization of the chromosomes of Annona cherimola (2n = 14) by a combination of in situ hybridization techniques, fluorochrome banding, and karyomorphological analysis. FISH revealed that 45S and 5S rDNA sites are co-localized in correspondence to the secondary constrictions of the SAT-chromosome pair. Some hypotheses on the organization of the linked 45S and 5S rDNA repeats have been made. FISH with Arabidopsis-type telomeric arrays demonstrated that the A. cherimola telomeres are constituted by TTTAGGG sequences and that they are exclusively localized at the extremities of chromosomes. An insight into the chromosome structure of A. cherimola was obtained by the self-GISH procedure which revealed highly repeated DNA sequences localized in the centromeric regions of all chromosomes. The correspondence of s-GISH signals with DAPI banding suggests that these sequences are the principal component of the centromeric heterochromatin of this species. The karyotype of A. cherimola here described is proposed as the basic reference karyotype for successive investigations in Annonaceae.



2020 ◽  
Vol 2 (3-4) ◽  
pp. 54-56
Author(s):  
Hasanova A.T. ◽  
Jafarova G.A.

Aim. The variability of centromeric heterochromatin of the chromosome pairs 1,9 and 16 was studied in material pro- vided by the Cytogenetic Counselling Centre. Materials and methods. The size of bands 1q12, 9q12 and 16q11 was classified as normal, larger, very large, narrow and pericentric inversion. The karyotypes under study were divided into four groups: (I) from persons with abnormal karyotype and abnor-mal phenotype, ( I I ) from persons with abnormal phenotype and normal karyotype, (III) from healthy nearest relatives (parents and sibs) of persons with abnormal phenotype and karyotype, (I V ) from normal healthy persons with normal phenotype and karyotype without any congenital malformations in the family history. Results. A different variability of centromeric hetero-chromatin of chromosomes 1 , 9 and 16 was observed. Quite a low variability was found in chromosome 16, while chromosomes 9 and 1 showed a high degree of variability, which was more accentuated in chromosome 9 than in chromo-some 1 . Conclusions. In all four groups there was a similar pattern of variability with the only exception in the group of nearest relatives of children with abnormal phenotype and karyotype where an unusually narrow band 1q12 was more fre- quently detected.



2020 ◽  
Vol 64 (2) ◽  
pp. 299-311 ◽  
Author(s):  
Amanda J. Broad ◽  
Jennifer G. DeLuca

Abstract The fidelity of chromosome segregation during mitosis is intimately linked to the function of kinetochores, which are large protein complexes assembled at sites of centromeric heterochromatin on mitotic chromosomes. These key “orchestrators” of mitosis physically connect chromosomes to spindle microtubules and transduce forces through these connections to congress chromosomes and silence the spindle assembly checkpoint. Kinetochore-microtubule attachments are highly regulated to ensure that incorrect attachments are not prematurely stabilized, but instead released and corrected. The kinase activity of the centromeric protein Aurora B is required for kinetochore-microtubule destabilization during mitosis, but how the kinase acts on outer kinetochore substrates to selectively destabilize immature and erroneous attachments remains debated. Here, we review recent literature that sheds light on how Aurora B kinase is recruited to both centromeres and kinetochores and discuss possible mechanisms for how kinase interactions with substrates at distinct regions of mitotic chromosomes are regulated.



2020 ◽  
Vol 53 (02) ◽  
pp. 08-11
Author(s):  
Aytakin Hasanova

Heterochromatin of centromeric chromosome regions contains late replicating, largely repetitive DNA. It is suggested that heterochromatin participates in chromosome pairing, crossing-over and in chromosome disjunction control (1,3). Centromeric heterochromatin, a variety of heterochromatin, is a tightly packed form of DNA.Centromeric heterochromatin is a constituent in the formation ofactive centromeres in most higher-order organisms; the domain exists on both mitotic and interphase chromosomes. (4,5,6,8) Centromeric heterochromatin is usually formed on alpha satellite DNA in humans; however, there have been cases where centric heterochromatin and centromeres have formed on originally euchromatin domains lacking alpha satellite DNA; this usually happens as a result of a chromosome breakage event and the formed centromere is called a neocentromere.



2019 ◽  
Vol 13 (2) ◽  
pp. 179-192 ◽  
Author(s):  
Anne-Marie Dutrillaux ◽  
Bernard Dutrillaux

Heterochromatin variation was studied after C-banding of male karyotypes with a XY sex formula from 224 species belonging to most of the main families of Coleoptera. The karyotypes were classified in relation with the ratio heterochromatin/euchromatin total amounts and the amounts of heterochromatin on autosomes and gonosomes were compared. The C-banded karyotypes of 19 species, representing characteristic profiles are presented. This analysis shows that there is a strong tendency for the homogenization of the size of the peri-centromeric C-banded heterochromatin on autosomes. The amount of heterochromatin on the X roughly follows the variations of autosomes. At contrast, the C-banded heterochromatin of the Y, most frequently absent or very small and rarely amplified, looks quite independent from that of other chromosomes. We conclude that the Xs and autosomes, but not the Y, possibly share some, but not all mechanisms of heterochromatin amplification/reduction. The theoretical models of heterochromatin expansion are discussed in the light of these data.



Sign in / Sign up

Export Citation Format

Share Document